首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sintered silicon carbide (SiC) was etched by a dielectric barrier discharge source. A high voltage bipolar pulse was used with helium gas for the plasma generation. One stable filament plasma was generated and could be used for SiC etching. As the processing gas (NF3) mixing rate increased, the width and depth of the etching profile became narrower and deeper. The differentiated V–Q Lissajous method was used for measuring the capacitances (Ceq) of the electrode after the plasma turned on. The width of the etching profile was proportional to Ceq. As the current peak value Ismx of the substrate current increased, the volume removal rate of SiC increased. The etch depth was proportional to the ratio of Ismx to Ceq. Additionally, because of the different characteristics of the plasma disks on SiC substrate by the voltage polarity, the etching profile was unstable. However, in high NF3 mixing process, the etching profile became stable and deeper.  相似文献   

2.
The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B_0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5?×?10~(-3)?-?10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B_0of 6300 G.Ar HWP with electron density~10~(18)–10~(20)m~(-3)and electron temperature~4–7 e V was produced at high B_0 of 5100 G,with an RF power of 1500 W.Maximum Ar~+ion flux of 7.8?×?10~(23)m~(-2)s~(-1)with a bright blue core plasma was obtained at a high B_0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar~+ion-beams of 40.1 eV are formed,which are supersonic(~3.1c_s).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1?×?10~(24)N_2/m~2 h.  相似文献   

3.
Optical emission spectroscopy (OES) using the trace rare gases of Ar and Xe have been carried out in a radio frequency (RF) driven negative ion source at Institute of Plasma Physics, Chinese Academy of Science (ASIPP), in order to determine the electron temperature and density of the hydrogen plasma. The line-ratio methods based on population models are applied to describe the radiation process of the excited state particles and establish their relations with the plasma parameters. The spectral lines from the argon and xenon excited state atoms with the wavelength of 750.4 and 828.0 nm are used to calculate the electron temperature based on the corona model. The argon ions emission lines with the wavelength of 480 and 488 nm are selected to calculate the electron density based on the collisional radiative model. OES has given the preliminary results of the electron temperature and density by varying the discharge gas pressure and RF power. According to the experimental results, the typical plasma parameters is Te ≈ 2–4 eV and ne ≈ 1×10 17– 8×1017 m−3 in front of plasma grid.  相似文献   

4.
A cold floating probe method was compared with the emissive floating probe method in terms of a low-pressure radio-frequency inductive discharge. The dependences of difference between the plasma potential and the floating potential on the electron temperature 1–8 eV, plasma density 109 –1012 cm−3 and magnetic field 100–650 G were obtained. It was demonstrated that the difference between the potentials that obtained by these two methods can differ significantly from the expected value of 5.2 kTe/e for argon.  相似文献   

5.
The reactive ion etching of PECVD silicon nitride thin films has been investigated using SF6 plasma. Effects of variations of process parameters such as pressure (50–350 mTorr), RF power (50–250 W), gas flow rate (3–130 sccm) and additions of O2 and He (0–50%) in SF6, on the PECVD silicon nitride etch rate and selectivity to the AZ 1350J photoresist were examined. An etch rate of 1 μm/min has been obtained under the condition of 150 mTorr, 100 W and 60 sccm. Experimental results also indicated a maximum etch rate at approximately 30% O2 while addition of He showed only dilution effect. A nitride/photoresist selectivity ranging from 1 to 3:1 has been obtained.  相似文献   

6.
Plasma source is the most important part of the laboratory plasma platform for fundamental plasma experimental research. Barium oxide coated cathode plasma source is well recognized as an effective technique due to its high electron emission current. An indirectly heated oxide coated cathode plasma source has been constructed on a linear magnetized plasma device. The electron emission current density can reach 2 A/cm 2 to 6 A/cm 2 in pulsed mode within pulse length 5–20 ms. A 10 cm diameter, 2 m long plasma column with density 10 18 m −3 to 10 19 m 3 and electron temperature Te ≈ 3–7 eV is produced. The spatial uniformity of the emission ability is less than 4% and the discharge reproducibility is better than 97%. With a wide range of the plasma parameters, this kind of plasma source provides great flexibility for many basic plasma investigations. The detail of construction and initial characterization of oxide coated cathode are described in this paper.  相似文献   

7.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

8.
An atmospheric-pressure microplasma plume of diameter 10 μm is generated inside a long tube. The length of the microplasma plume reaches as much as 2 cm. First, with the assistance of an air dielectric barrier discharge (DBD), the ignition voltage of the microplasma decreases from 40 kV to 23.6 kV. Second, although the current density reaches as high as (1.2−7.6)×104 A cm −2 , comparable to the current density in transient spark discharge, the microplasma plume is non- thermal. Third, it is interesting to observe that the amplitude of the discharge current in a positive cycle of applied voltage is much lower than that in a negative cycle of applied voltage. Fourth, the electron density measured by the Stark broadening of Ar spectral line 696.5nm reaches as high as 3×1016 cm−3 , which yields a conductivity of the microplasma column of around 48 S m−1 . In addition, the propagation velocity of the microplasma plume, obtained from light signals at different axial positions, ranges from 1×105 m s −1 to 5×10 5 m s−1 . A detailed analysis reveals that the surface charges deposited on the inner wall exert significant influence on the discharge behavior of the microplasma.  相似文献   

9.
Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA·cm −2 to 4 mA·cm −2 . The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and [N 2 ]) generation. It is observed that in an N 2 -H 2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H 2 in the mixture at 3 mbar pressure and current density of 4 mA·cm −2  相似文献   

10.
The technique of ion beam synthesis (IBS) using high doses of energetic ions has been successfully implemented to produce a variety of compounds, the physical properties of which are dependent on the implanted species and range from insulators, e.g. SiO2, through semiconductors, e.g. SiC, to conductors, e.g. CoSi2. In this paper we study the evolution of these compounds and compare and contrast their methods of formation. To demonstrate the versatility of the technique we look at three examples of IBS layers: (1) To date most of the interest in IBS has concentrated on the production of buried oxide layers for silicon-on-insulator (SOI) device applications. Recently it has been shown that by using a series of sequential implants and high-temperature anneals the defect density in the silicon overlayer can be dramatically reduced. To study how this process occurs, we followed the redistribution of the implanted species during implantation and annealing using both 16O+ and 18O+. (2) Buried CoSi2 layers can be fabricated in (100) single-crystal silicon by implanting high doses of energetic cobalt ions at elevated temperatures. For the higher doses (≥ 4 × 1017 O+/cm2 at 350 keV), a continuous coherent layer of CoSi2 grows epitaxially during implantation. For lower doses, precipitates of both A- and B-type CoSi2 are observed. After annealing at 1000° C for 30 min, single-crystal aligned layers are produced for the higher doses, while for lower doses discrete octahedral A-type precipitates are formed. (3) The microstructures of synthesized SiC layers are more complex than analogous synthesized oxide or silicide layers. Unlike buried oxide layers, the carbon concentration at the peak of the implanted distribution does not saturate at a value equivalent to that in the stoichiometric compound, but continues to rise, reflecting the lower diffusivity of the C in the synthesized compound layer. To achieve chemical segregation of the implanted carbon, very-high-temperature (≥ 1300°C), long-time (typically 20 h) anneals are required. At the interface with the silicon substrate the synthesized layer grows with a degree of epitaxy. This is also found to occur during implantation if the temperature is ≥ 650° C.  相似文献   

11.
The spectral emission and plasma parameters of SnO_2 plasmas have been investigated.A planar ceramic SnO_2 target was irradiated by a CO2 laser with a full width at half maximum of 80 ns.The temporal behavior of the specific emission lines from the SnO_2 plasma was characterized.The intensities of Sn I and Sn II lines first increased,and then decreased with the delay time.The results also showed a faster decay of Sn I atoms than that of Sn II ionic species.The temporal evolutions of the SnO_2 plasma parameters(electron temperature and density) were deduced.The measured temperature and density of SnO_2 plasma are 4.38 eV to0.5 eV and 11.38×10~(17) cm~(-3) to 1.1×10~(17) cm~(-3),for delay times between 0.1 μs and 2.2 μs.We also investigated the effect of the laser pulse energy on SnO_2 plasma.  相似文献   

12.
High resistivity silicon detectors along with MOS capacitors made on five silicon dioxides with different thermal conditions (975°C to 1200°C) have been exposed to fast neutron irradiation up to the fluence of a few times 1014 n/cm2. New measurement techniques such as capacitance-voltage of MOS capacitors and current-voltage and back-to-back diodes (p+-n--p + if n- is not inverted to p) or resistors (p+-p-p+ if inverted) have been introduced in this study in monitoring the possible type-inversion (n→p) under high neutron fluence. No type-inversion in the material underneath SiO2 and the p+ contact has been observed for detectors made on the five oxides up to the neutron fluence of a few times 1013 n/cm2. However, it has been found that detectors made on higher temperature oxides (⩾1100°C) exhibited less leakage current increase at high neutron fluence  相似文献   

13.
In this paper, a low-pressure capacitively coupled plasma discharge sustained in an argonoxygen mixture was studied in order to evaluate its properties in terms of inactivation of Staphylococcus aureus. The plasma parameters as electron temperature and plasma density were measured by the Langmuir probe (Ne ≈ 1015 m−3, Te ≈ 1.5 eV), while the neutral atom density was in the range of 1021 m−3. In the plasma phase, oxygen radicals were taken as reference of the reactive species with antimicrobial activity, and oxygen spectral lines, over a range of plasma process parameters, were investigated by the optical emission spectroscopy. Optimal plasma conditions were found, and a count reduction of 4 log in a few minutes of the bacterium proves the potentiality of an industrial grade plasma reactor as a sterilization agent.  相似文献   

14.
The temperature and density of plasma jets were estimated with a Boltzmann plot and Stark broadening of Ar I (696.54 nm) lines by optical emission spectroscopy (OES) in the process of plasma plastic, and the morphology and microstructure of tungsten (W) powders were investigated by scanning electron microscope (SEM) and x-ray Diffraction (XRD), respectively. The results show that the assumption of local thermodynamic equilibrium (LTE) was invalid at the end of the plasma jets, and earlier than this after the injection of tungsten powder. The temperature and electron density of the plasma jets were up to about T=6797 K with Qc=50 slpm and ne=1.05×1016 cm−3 with Qs=115 slpm at Z=60 mm, respectively, and both dropped rapidly with the injected tungsten powders of 20 μm. After the plasma plastic process, the spherical tungsten powders were prepared and there were some satellite particles on the surface of the spherical products. The tungsten powders were both composed of a single equilibrium α-W phase with a body centered cubic (bbc) crystal structure before and after plasma treatment.  相似文献   

15.
Charged particle activation analysis (CPAA) is able to analyze light elements such as carbon and oxygen at trace levels in semiconductor materials. This technique requires the knowledge of the stopping powers of these materials for channeled ions. The electronic energy loss for ions entering the crystal lattice in a random direction is well established. The electronic energy losses for protons, deuterons, 3He+ and 4He+ ions entering a 3.6 μm thick silicon single crystal along the 1 0 0 direction were measured by using the transmission of particles technique. Data obtained were compared with those obtained by other authors using theoretical and experimental methods.  相似文献   

16.
Ion-implanted silicon pad detectors fabricated on different n-type and p-type silicon wafers with initial resistivities between 2.6 and 12.9 kΩcm were irradiated with neutrons of ~1 MeV energy, up to a fluence of 5×1013 n cm-2. The evolution of diode leakage current and capacitance characteristics is presented as a function of the neutron fluence. The reverse diode current increases proportionally to the neutron fluence. There is evidence that the doping of the initial n-type material evolves towards intrinsic and inverts to an apparent p-type at fluences between 1×1013 and 3×1013 n cm-2, depending on the initial silicon resistivity. There is also evidence that p-type material remains of the same conduction type with a slight increase of the acceptor doping with fluence. The signal shape and the charge collection efficiency for incident β particles were measured  相似文献   

17.
The effects of driving frequency on plasma parameters and electron heating efficiency are studied in cylindrical inductively coupled plasma (ICP) source. Measurements are made in an Ar discharge for driving frequency at 13.56/2 MHz, and pressures of 0.4–1.2 Pa. In 13.56 MHz discharge, higher electron density (ne) and higher electron temperature (Te) are observed in comparison with 2 MHz discharge at 0.6–1.2 Pa. However, slightly higherne andTe are observed in 2 MHz discharge at 0.4 Pa. This observation is explained by enhanced electron heating efficiency due to the resonance between the oscillation of 2 MHz electromagnetic field and electron-neutral collision process at 0.4 Pa. It is also found that the variation ofTe distribution is different in 13.56 and 2 MHz discharge. For ICP at 13.56 MHz, Te shows an edge-high profile at 0.4–1.2 Pa. For 2 MHz discharge,Te remains an edge-high distribution at 0.4–0.8 Pa. However, the distribution pattern involves into a center-high profile at 0.9–1.2 Pa. The spatial profiles ofne remain a center-high shape in both 13.56 and 2 MHz discharges, which indicates the nonlocal kinetics at low pressures. Better uniformity could be achieved by using 2 MHz discharge. The effects of gas pressure on plasma parameters are also examined. An increase in gas pressure necessitates the rise ofne in both 13.56 and 2 MHz discharges. Meanwhile, Te drops when gas pressure increases and shows a flatter distribution at higher pressure.  相似文献   

18.
The release of tritium from irradiated boron carbide in a pure Ar atmosphere was investigated between 500 and 900°C. The sintered B4C samples with densities between 75 and 95% of the theoretical density were irradiated with reactor neutrons with total neutron doses up to 5 × 1020/cm2. Effective diffusion coefficients, Deff, were derived from the release data using the model “diffusion out of a sphere”. Deff decreases by about 3 orders of magnitude with increasing total neutron dose, levels off at about 1018n/cm2 and increases at very high doses ( > 1020 n/cm2). The decrease in the tritium mobility is attributed to the radiation defects formed in the B4C. The activation energy of 210 ± 30 kJ/mol for the tritium diffusion in the irradiated B4C is much higher than the value found for unirradiated material. Deff depends also very strongly on the density of the sintered material.  相似文献   

19.
In this study, the density of metastable He2* in an atmospheric-pressure plasma jet operating in helium with 0.001% nitrogen has been measured using an auxiliary measuring electrode technique. In the glow discharge mode, waveforms from two grounding electrodes, including one main discharge electrode and one auxiliary electrode, are captured. The isolated current peak formed by Penning ionization in waveforms from the auxiliary measuring electrode is identified to calculate the density of metastable He2*. In our discharge environment, the helium metastable densities along the jet axis direction are between 2.26× 1013 and 1.74× 1013 cm-3, which is in good agreement with the results measured by other techniques. This measurement technique can be conveniently applied to the diagnosis of metastableHe2* in an atmospheric-pressure plasma jet array.  相似文献   

20.
Extreme ultraviolet(EUV) spectra emitted from low-Z impurity ions in the wavelength range of10–500 ? were observed in Experimental Advanced Superconducting Tokamak(EAST)discharges. Several spectral lines from K-and L-shell partially ionized ions were successfully observed with sufficient spectral intensities and resolutions for helium, lithium, boron, carbon,oxygen, neon, silicon and argon using two fast-time-response EUV spectrometers of which the spectral intensities are absolutely calibrated based on the intensity comparison method between visible and EUV bremsstrahlung continua. The wavelength is carefully calibrated using wellknown spectra. The lithium, boron and silicon are individually introduced for the wall coating of the EAST vacuum vessel to suppress mainly the hydrogen and oxygen influxes from the vacuum wall, while the carbon and oxygen intrinsically exist in the plasma. The helium is frequently used as the working gas as well as the deuterium. The neon and argon are also often used for the radiation cooling of edge plasma to reduce the heat flux onto the divertor plate. The measured spectra were analyzed mainly based on the database of National Institute of Standards and Technology. As a result, spectral lines of He Ⅱ, Li Ⅱ–Ⅲ, B Ⅳ–Ⅴ, C Ⅲ–Ⅵ, O Ⅲ–Ⅷ, Ne Ⅱ–Ⅹ,Si Ⅴ–Ⅻ, and Ar Ⅹ–XVI are identified in EAST plasmas of which the central electron temperature and chord-averaged electron density range in T_(e0)=0.6–2.8 keV and n_e=(0.5–6.0)×10~(19) m~(-3), respectively. The wavelengths and transitions of EUV lines identified here are summarized and listed in a table for each impurity species as the database for EUV spectroscopy using fusion plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号