共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
采用光学显微镜、扫描电镜、透射电镜、物理化学相分析等方法并结合热力学计算,分析了CSP工艺生产的钛微合金化高强钢的析出物特征及析出规律.研究发现:屈服强度700 MPa级高强钢中存在大量球形的纳米级TiC和Ti(C,N)粒子及少量不规则形状、100 nm以上的Ti4C2S2粒子,TiN在连轧前完成析出,TiC主要在卷取和空冷时析出.不含钼钢和含钼钢(0.1% Mo)中MC相的质量分数为0.049%和0.043%,由于钼的加入,含钼钢中Ti的析出量较少,但析出粒子更为细小,并定量得到了不含钼钢和含钼钢的析出强化效果分别为126 MPa和128 MPa. 相似文献
5.
针对低成本超高强度钢的开发问题,在国外材料基础上设计开发了低成本Ti微合金化超高强度钢,弥补了国内相关产品空白;同时通过力学测试、微观组织表征、析出相分析等方法揭示了Ti微合金化对试验钢的组织性能影响规律及强韧化机制,为低成本超高强度钢板新材料的工业化应用提供数据积累与理论支撑。试验结果表明:Ti微合金化试验钢与基础钢相比,屈服强度相当,断面收缩率从33%提升至44%,低温冲击韧性也从22.6 J提升至26.7 J,可见Ti微合金化试验钢具有更好的塑韧性匹配;其主要原因是Ti微合金化试验钢中有较多的MC型和M3C型碳化物析出,使得基体中固溶的C质量分数从0.287%降至0.247%,同时Ti微合金化使得试验钢的原奥氏体晶粒由9.5级细化至11.0级,有效晶粒尺寸从1.8μm降低至1.3μm。计算结果显示:Ti微合金化试验钢碳当量较基础钢明显降低,因此焊接性能更好;Ti微合金化试验钢通过降低固溶强化、提高位错强化和细晶强化以及析出强化,实现了屈服强度的提升,并保障了韧性和工艺性能。 相似文献
6.
EAF-CSP流程钛微合金化高强钢板的组织和性能研究 总被引:6,自引:1,他引:6
珠钢采用Ti微合金化技术在EAF—CSP流程上成功地开发出屈服强度为450~700MPa的高强度热轧钢板。系统地研究了试验钢的组织和性能.并分析了组织与性能的关系。结果表明,随钛含量增加或成品厚度减薄钢板的屈服强度显著提高,最高达到695MPa;钛的质量分数低于0.024%时对屈服强度影响不大;当钛的质量分数低于0.045%时.钢板屈服强度的提高主要来自于晶粒细化,而当钛的质量分数大于0.045%后,钢板强度的进一步提高来自于沉淀强化。 相似文献
7.
The continuous cooling transformation behavior, the effect of coiling temperature on microstructure and mechanical properties, and strengthening mechanisms of Ti microalloyed high strength hot strip steel were systematically investigated by thermal simulation testing machine, laboratory rolling mill, SEM and HR-TEM. The dynamic CCT curve was established. The results show that the austenite to ferrite and pearlite transformation takes place when the cooling rate is less than 1??/s. The austenite to bainite transformation accompanied with austenite to ferrite and pearlite transformation takes place when the cooling rate is in the range of 5 ??/s to 10 ??/s. The bainitic transformation temperature is about 600??. The amount of granular bainite decreases, while the amount of lath bainite increases with the increase of cooling rate in the range of 20??/s to 50??/s. Furthermore, the study on the effect of coiling temperature on the microstructure and mechanical properties of experimental steel has shown that the strength and plasticity of tested steel are improved with decreasing the coiling temperature. When the coiling temperature is 550?棬the experimental steel possesses optimal mechanical properties owing to the grain refinement and precipitation of nano-scale TiC particles. And the tensile strength, yield strength and elongation of tested steel were 742MPa, 683MPa and 22??5%, respectively. 相似文献
8.
对不同钛含量的700L汽车大梁钢母材及熔化极性气体保护焊(MAG)焊接后试样的显微组织、力学性能进行对比研究。结果表明:钛含量为0.11%时,试验钢显微组织中铁素体晶粒为3~5μm,还有少量的变形带,屈服强度为678 MPa,抗拉强度为760 MPa,伸长率为17.0%;钛含量为0.07%时,显微组织中铁素体晶粒为4~8μm,还有少量的珠光体颗粒,屈服强度为658 MPa,抗拉强度为734 MPa,伸长率为24.0%;MAG焊接后,两种试验钢的强度升高10 MPa左右,但伸长率分别降低1.0、3.0个百分点,背弯180°(d=2a)性能合格;随着钛含量的增加,试验钢的热影响区显微组织得到细化,低碳马氏体含量有所增多。 相似文献
9.
10.
11.
12.
以低碳含磷钢为研究对象,通过分析不同卷取温度时(分别为600、650和700 ℃)热轧态和冷轧退火态的显微组织和力学性能以及退火再结晶动力学行为,研究了微钛(0.015%)处理对钢的组织和性能的影响.研究结果表明,热轧卷取温度对低碳含磷钢的显微组织和力学性能影响很小,但微钛处理后,低碳含磷钢的再结晶动力学受到延迟,特别当卷取温度为600 ℃时,不但热轧态和冷轧退火态的强度提高,而且力学性能对卷取温度和退火温度的敏感性增加;随着卷取温度的降低,热轧态和冷轧退火态的强度提高,且冷轧退火态强度随着退火温度升高而降低的幅度增加.微钛处理对含磷钢组织和性能的影响与钛析出相的粗化行为有关. 相似文献
13.
14.
15.
16.
17.
以低碳含磷钢为研究对象,通过分析不同卷取温度(600、650、700℃)时热轧态和冷轧退火态的显微组织、力学性能及退火再结晶动力学行为,对比研究了微铌(0.02%)处理和铌钛复合微合金化(0.02%Nb+0.012%Ti)对钢的组织和性能的影响。研究结果表明,与微铌处理钢相比,铌钛复合微合金化钢在600℃卷取时析出物数量更多,在更高温度卷取时熟化速度更快,650℃卷取时即熟化到一定程度。低温(600℃)卷取时,铌钛复合微合金化钢的退火再结晶更难,800℃×30s连续退火可以保证完全再结晶。将温度继续升高至800℃以上,会导致强度下降,在一定程度上影响板卷之间的性能稳定性。 相似文献
18.
通过100 kg真空感应炉,分别添加V-N合金和V-Fe合金熔炼成15MnVNq钢(%-0.15C、1.71Mn、0.11V、0.019 ON)和15MnVq钢(%:0.15C、1.72Mn、0.11V、0.003 3N),并轧制成14 mm钢板.试验结果表明,15MnVq钢中加入0.019%的N促进V(C,N)析出和明显细化钢的组织,钢的屈服和抗拉强度分别由393 MPa和578 MPa提高至510 MPa和660 MPa,-20℃冲击功AKV由21.9 J提高到101.8 J;同时加N后明显降低了15MnVq钢的时效敏感性. 相似文献
19.
20.
采用金相显微镜、电子显微镜等手段研究控轧控冷工艺对Ti微合金化高强钢的组织和性能的影响。结果表明:在低温终轧(800℃)、600℃保温1 h的试验钢的屈服强度和抗拉强度最高,分别为670.7 MPa和752 MPa。高温终轧(1 030℃)的试验钢组织主要为准多边形铁素体、针状铁素体和粒状贝氏体,组织粗大;低温终轧(800℃)的组织主要为多边形铁素体,晶粒较细小。在600℃保温1 h的试验钢中存在大量的纳米尺寸TiC粒子,沉淀强化效果明显,未在600℃保温1 h的试验钢中,TiC的析出受到限制,沉淀强化效果明显减弱。 相似文献