首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
顾苏杭  王士同 《控制与决策》2020,35(9):2081-2093
提出利用特征增量学习和数据风格信息双知识表达约束的模糊K平面聚类(ISF-KPC)算法.为了获得更好的泛化性,聚类前利用高斯核函数对原输入特征进行增长式的特征扩维.考虑数据集中来源于同一聚类的样本具有相同的风格,以矩阵的形式表达数据风格信息,并采用迭代的方式确定每个聚类的风格矩阵.大量实验结果表明,双知识表达约束的ISF-KPC与对比算法相比能够取得竞争性的聚类性能,尤其在具有典型风格数据集上能够取得优异的聚类性能.  相似文献   

2.
动态加权模糊核聚类算法   总被引:2,自引:0,他引:2  
为了克服噪声特征向量对聚类的影响,充分考虑各特征向量对聚类结果的贡献度的不同,运用mercer核将待聚类的数据映射到高维空间,提出了一种新的动态加权模糊核聚类算法.该算法运用动态加权,自动消弱噪声特征向量在分类中的作用,在对数据没有任何先验信息的情况下,不仅能够准确划分线性数据,而且能够做到非线性划分非团状数据.仿真和实际数据分类结果表明,数据中的噪声对分类结果影响较小,该算法具有很高的实用性.  相似文献   

3.
针对多传感器观测数据存在不确定性的问题,基于直觉模糊聚类,提出一种新的数据关联算法。将改进的直觉模糊C-均值聚类(IFCM)算法应用于数据关联,首先将观测数据和预测数据进行直觉模糊化,然后计算直觉模糊集之间的加权距离以获得观测与航迹的隶属度,最后依次搜索最大隶属度实现观测与航迹的关联。仿真实验表明,存在模糊观测数据情况下,算法能有效地进行数据关联。  相似文献   

4.
基于流数据的模糊聚类算法   总被引:1,自引:0,他引:1  
对流数据进行有效聚类是一个吸引研究者很大注意力的问题.传统的聚类挖掘算法只能适用于纯数值属性数据或纯分类属性数据,很难适用于混合属性的数据.针对混合属性数据的特点,在借鉴AcluStream算法的基础上,提出了一种模糊聚类算法.算法对流数据的相异度分类度量,定量属性使用欧氏距离和曼哈坦距离度量,定性属性可以采用hamming距离度量.模糊聚类算法的主要步骤有两步:第一步,运用最小距离聚类算法进行聚类,构成一个初始类.第二步,对基于最小距离聚类算法进行聚类所得到的初始簇,运用密度聚类方法进行聚合或分割,使得聚类集合稳定.实践证明:该算法是快速地有效的.  相似文献   

5.
针对传统协同过滤(CF)推荐算法存在评分矩阵稀疏、扩展性弱和推荐准确率低的缺陷,提出一种改进模糊划分聚类的协同过滤推荐算法(GIFP-CCF+)。在传统基于修正余弦相似度计算方法上,引入时间差因子、热门物品权重因子以及冷门物品权重因子以改善相似度计算结果;同时引入改进模糊划分的GIFP-FCM算法,将属性特征相似的项目聚成一类,构造索引矩阵,同索引间根据项目间的相似度寻找项目最近邻居构成推荐,从而提高协同过滤算法(CF)的精度。通过与Kmeans-CF、FCM-CF和GIFP-CCF算法进行仿真对比实验,证明了GIFP-CCF+算法在推荐结果和推荐精度上具有一定的优越性。  相似文献   

6.
基于划分的模糊聚类算法   总被引:68,自引:1,他引:67       下载免费PDF全文
张敏  于剑 《软件学报》2004,15(6):858-868
在众多聚类算法中,基于划分的模糊聚类算法是模式识剐中最常用的算法类型之一.至今,献中仍不断有关于基于划分的模糊聚类算法的研究成果出现.为了能更为系统和深入地了解这些聚类算法及其性质,本从改变度量方式、改变约束条件、在目标函数中引入熵以及考虑对聚类中心进行约束等几个方面,对在C-均值算法的基础上得到的基于划分的模糊聚类算法作了综述和评价,对各典型算法的优缺点进行了实验比较分析.指出标准FCM算法被广泛应用的原因之一是它对数据的比例变化具有鲁棒性,而其他类似的算法对这种比例变化却很敏感.并以极大熵方法为例进行了比较实验.最后总结了基于划分的模糊聚类算法普遍存在的问题及其发展前景。  相似文献   

7.
BTS(Best Two Step)聚类算法是结合层次聚类和划分聚类算法的两步聚类算法。层次聚类算法类与类之间不可以对象交换,很容易造成聚类质量不高的结果。而划分聚类对于初始值的设定以及异常噪声数据都很敏感,所以我们研究提出了BTS算法,实验证明BTS算法可达到高质量的聚类效果。  相似文献   

8.
提取区间型数据的特征值,给出适用于区间型数据模糊聚类的FCM算法族(IFCM)。该算法适用于不同特征样本数据的模糊聚类运算,并可对聚类结果进行优化。聚类效果的仿真比较表明,IFCM聚类的平均失真度比基于欧氏距离的FCM聚类算法低6.81%。由于距离定义的合理性,IFCM可以根据区间型数据的不同特点调整特征值的聚类权重,并推广至多维类型数据的模糊聚类。  相似文献   

9.
集群资源模糊聚类划分模型   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种集群资源模糊聚类划分模型。对计算机集群中计算节点的CPU、内存、网络、I/O和网卡资源参数进行量化和规范化,运用模糊聚类技术,实现计算节点的聚类划分。引入任务资源需求向量和最低误差容忍向量,将计算机集群划分为若干个性能均衡的逻辑子群。测试结果表明,该模型能有效划分计算机集群,适用于云计算领域的资源调度。  相似文献   

10.
在实际应用领域,常常存在同时包含数值型和分类型特征的混合数据。然而,已有的大多数聚类算法只能处理数值型或分类型单一类型数据,因此,提出一个基于划分的混合数据聚类算法。首先给出K-Prototypes算法中分类型数据类中心的多Modes表示方式,进而将传统的欧式距离扩展到混合数据,使之能够在相同框架下更加精确地反映对象与类之间的相异性,在此基础上提出一个用于处理混合数据的划分式聚类算法。最后,在UCI数据集上的实验结果表明,与K-Prototypes算法相比,所提出的算法能够有效提高聚类质量。  相似文献   

11.
为精确分析测量系统故障数据和识别故障类型.提出一种基于模糊聚类算法的故障数据分析方法。该方法首先用小波变换有效地检测出系统故障的微弱非线性不规则信号,再用模糊聚类的方法对故障进行分类识别。由于该算法在目标函数中加入隶属度函数,同时定义明可夫斯基的距离测度.因此能够克服K-means算法不适用于进行非凸形状的聚类的缺点.从而使诊断的数据更加精确。  相似文献   

12.
一种增量式模糊聚类算法   总被引:5,自引:2,他引:5  
随着数据库中数据的迅速增长,新增数据对聚类结果有很大影响,而重新聚类势必严重浪费计算资源。本文提出了一种增量式的模糊聚类算法,合理地解决了新增数据对象的聚类及类属问题,并应用实例说明了新老算法具有同样的可靠性,但新算法大大提高了聚类分析与知识维护的效率。  相似文献   

13.
模糊聚类的最大树算法在Web页面分类中的应用   总被引:5,自引:0,他引:5  
通过Web日志中记录的客户对Web页面的访问情况建立Web页面的用户访问矩阵,在此基础上构造模糊相似矩阵,根据模糊相似矩阵由最大树算法进行聚类。分析和算例表明,通过模糊相似矩阵进行聚类避免了构造模糊等价矩阵的大计算量,具有简单、快捷,适合处理高维数据的特点。  相似文献   

14.
介绍一种基于模糊逻辑的数据聚类技术,讨论了模糊C均值聚类方法。模糊C均值算法就是利用模糊逻辑理论和聚类思想,将n样本划分到c个类别中的一个,使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。  相似文献   

15.
本文参照在自动分类问题中一种常见的基于Kullback-Leibler距离的特征聚类算法,针对其特征压缩造成的性能损失而导致分类性能下降的问题提出了改进,结合模糊数学的思想,提出了一种基于特征模糊相关的特征聚类算法FFC,最后在本文的一个应用系统AGENT上给出实验数据,并比较了两种算法的差异.  相似文献   

16.
一种协同的FCPM模糊聚类算法   总被引:1,自引:0,他引:1  
比重隶属度模糊聚类(FCPM)算法可从不同角度解决聚类问题,取得较好效果。协同聚类算法利用不同特征子集之间的协同关系,并与其它聚类算法相结合,可提高原有的聚类性能。文中在FCPM聚类算法的基础上进行改进,将其与协同聚类算法相结合,提出一种协同的FCPM聚类算法。该算法在原有FCPM聚类算法的基础上,提高对数据集的聚类效果。在对数据集Wine和Iris进行测试的结果表明,该方法优于FCPM算法,说明该方法的有效性。  相似文献   

17.
BIRCH: A New Data Clustering Algorithm and Its Applications   总被引:14,自引:0,他引:14  
Data clustering is an important technique for exploratory data analysis, and has been studied for several years. It has been shown to be useful in many practical domains such as data classification and image processing. Recently, there has been a growing emphasis on exploratory analysis of very large datasets to discover useful patterns and/or correlations among attributes. This is called data mining, and data clustering is regarded as a particular branch. However existing data clustering methods do not adequately address the problem of processing large datasets with a limited amount of resources (e.g., memory and cpu cycles). So as the dataset size increases, they do not scale up well in terms of memory requirement, running time, and result quality.In this paper, an efficient and scalable data clustering method is proposed, based on a new in-memory data structure called CF-tree, which serves as an in-memory summary of the data distribution. We have implemented it in a system called BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies), and studied its performance extensively in terms of memory requirements, running time, clustering quality, stability and scalability; we also compare it with other available methods. Finally, BIRCH is applied to solve two real-life problems: one is building an iterative and interactive pixel classification tool, and the other is generating the initial codebook for image compression.  相似文献   

18.
在模糊k平面聚类(KPC)算法的基础上,通过引入正交约束提出正交模糊k平面聚类算法(OFKPC)。与KPC及模糊KPC(FKPC)类似,OFKPC仍从原型出发,用k组超平面替代传统的点(类中心)作为聚类原型。同时根据KPC及FKPC的思想,中心超平面是用来尽量区分不同类样本,因此这些超平面法向量构成的矩阵可用来进行特征降维。在人工数据集和UCI数据集上实验表明,OFKPC算法不仅较FKPC算法有更好的聚类效果,且具有更强的特征降维能力。  相似文献   

19.
数据挖掘中的聚类算法综述   总被引:30,自引:0,他引:30  
聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术。全面总结了数据挖掘中聚类算法的研究现状,分析比较了它们的性能差异和各自存在的优点及问题,并结合多媒体领域的应用需求指出了其今后的发展趋势。  相似文献   

20.
朱强 《现代计算机》2007,(4):87-88,94
分析了常用的数据挖掘方法,在数据挖掘中引入了模糊聚类分析的方法,分析了该方法在数据挖掘中的优势,并以例证说明这一方法的实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号