首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A double-chamber gas-liquid phase DBD reactor (GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx. The performance of the GLDR on discharge characteristics, reactive species production and benzene degradation was compared to that of the single-chamber gas phase DBD reactor (GPDR). The effects of discharge gap, applied voltage, initial benzene concentration, gas flow rate and solution conductivity on the degradation and energy yield of benzene in the GLDR were investigated. The GLDR presents a higher discharge power, higher benzene degradation and higher energy yield than that of the GPDR. NO2 emission was remarkably inhibited in the GLDR, possibly due to the dissolution of NO2 in water. The benzene degradation efficiency increased with the applied voltage, but decreased with the initial concentration, gas flow rate, and gas discharge gap, while the solution conductivity presented less influence on benzene degradation. The benzene degradation efficiency and the energy yield reached 61.11% and 1.45 g kWh–1 at 4 mm total gas discharge gap, 15 kV applied voltage, 200 ppm benzene concentration, 0.2 L min−1 gas flow rate and 721 μS cm−1 water conductivity. The intermediates and byproducts during benzene degradation were detected by FT-IR, GC-MS and LC-MS primarily, and phenols, COx, and other aromatic substitutes, O3, NOx, etc, were determined as the main intermediates. According to these detected byproducts, a possible benzene degradation mechanism was proposed.  相似文献   

2.
In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermenta- tion. Response surface methodology (RSM) was used to optimize the discharge-associated pa- rameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply volt- age, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge- induced enhancement in ethanol yield were plasma exposure time of 1 rain, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control.  相似文献   

3.
This paper presents the design and construction of non-thermal plasma jet device which was built in plasma phys. Dept., NRC, AEA, Egypt with a plasma application group. This design will be useful to initiate research in different fields such as low temperature plasma, polymer and biomedical applications. The experimental operation of this device is conducted with power supply of (10 kV, 30 mA, and 20 kHz). The discharge process takes place by using Air as input gas with different flow rates. The experimental results showed that the maximum plasma jet length of 7 mm is detected at air flow rate of 12 L/min. The electrical characteristics of discharge at different flow rates of Air such as discharge voltage, current, mean power, power efficiency, and energy have been studied by using potential dividers and Lissajous figure techniques. The results of plasma jet temperature along the jet length showed that the jet plasma has approximately a room temperature at the end of jet column.  相似文献   

4.
A highly-integrated experimental system for the plasma decomposition of fuels was built.Experiments were conducted in a flow reactor at atmospheric pressure and confirmed that n-decane could be cracked by large-gap dielectric barrier discharge under the excitation of a microsecond-pulse power supply. Alkanes and olefins with a C atom number that is smaller than10 as well as hydrogen were found in the cracked products of n-decane(n-C10 H22). The combination of preheating and plasma decomposition had strong selectivity for olefins. Under strong discharge conditions, small molecule olefins were found in the products. Moreover, there was a general tendency that small molecule olefins gradually accounted for higher percentage of products at higher temperature and discharge frequency.  相似文献   

5.
采用硫酸和磷酸的混合酸作为去污剂,以530 ℃钠中浸泡3 700 h的304和316不锈钢为试样,进行了快堆设备去污模拟试验,并在去污试验后对试样进行去污深度、微观形貌以及力学性能等分析。结果表明:304和316不锈钢最大去污深度分别可达约10 μm和4 μm;材料去污深度随去污温度、时间、去污剂流速的增加而增大;相同条件下,304不锈钢的去污深度大于316不锈钢。去污后,材料均保持较好的延伸率,抗拉强度略有降低,不影响材料的整体力学性能。以12.5 g/L硫酸和30 g/L磷酸的混合酸一步法去污作为快堆粘钠设备的去污法具有操作简单、去污快、产生废液量少的特点,说明该混合酸是一种高效去污剂。  相似文献   

6.
TOPAZ-Ⅱ反应堆慢化剂温度效应分析   总被引:4,自引:4,他引:0  
TOPAZ-Ⅱ反应堆是以高富集度铀为燃料,以氢化锆为慢化剂的空间发电用反应堆。与一般采用氢化锆作为慢化剂的反应堆不同,TOPAZ-Ⅱ反应堆呈现正的慢化剂温度效应,且其值较大。本工作采用MCNP程序对TOPAZ-Ⅱ反应堆的慢化剂温度效应进行计算,通过分析氢化锆升温前后主要区域中子能谱和中子产生率、中子吸收率及泄漏率的变化,得出产生正慢化剂温度效应的原因:氢化锆升温后,中子产生率增加较大,而泄漏率增加较小,且吸收率减少,从而产生正的慢化剂温度效应。  相似文献   

7.
A typical quinolones antibiotic ciprofloxacin(CIP) in aqueous solution was degraded by a gas–liquid discharge non-thermal plasma system. The discharge plasma power and the emission intensity of the excited reactive species(RS) generated in the gas phase were detected by the oscilloscope and the optical emission spectroscopy. The effects of various parameters on CIP degradation, i.e. input powers, initial concentrations addition of radical scavengers and p H values were investigated. With the increase of discharge power, the degradation efficiency increased but the energy efficiency significantly reduced. The degradation efficiency also reduced under high concentration of initial CIP conditions due to the competitive reactions between the plasma-induced RS with the degradation intermediates of CIP. Different radical scavengers(isopropanol and CCl_4) on ·OH and H· were added into the reaction system and the oxidation effects of ·OH radicals have been proved with high degradation capacity on CIP.Moreover, the long-term degradation effect on CIP in the plasma-treated aqueous solution proved that the long-lived RS(H_2O_2 and O_3, etc) might play key roles on the stay effect through multiple aqueous reactions leading to production of ·OH. The degradation intermediates were determined by the method of electrospray ionization(+)-mass spectroscopy, and the possible degradation mechanism were presented.  相似文献   

8.
The transition from a spark discharge to a constricted glow discharge in atmospheric air was studied with a capacitor coupled pin-to-water plasma reactor. The reason of the transition is considered to be of various factors, namely the change of the air gap due to the polarization of water molecules by the electric field, the feedback effect of the capacitors, and the ion trapping mechanism. The effects of the frequency of the power supply, inter-electrode gap, and coupled capacitance on the discharge transition were also investigated.  相似文献   

9.
A coaxial dielectric barrier discharge (DBD) reactor was used for plasma-catalytic degradation of tetracycline hydrochloride over a series ofMn/γ-Al2O3 catalysts prepared by the incipient wetness impregnation method. The combination of plasma and theMn/γ-Al2O3 catalysts significantly enhanced the degradation efficiency of tetracycline hydrochloride compared to the plasma process alone, with the 10%Mn/γ-Al2O3 catalyst exhibiting the best tetracycline hydrochloride degradation efficiency. A maximum degradation efficiency of 99.3% can be achieved after 5 min oxidation and a discharge power of 1.3 W, with only 69.7% by a single plasma process. The highest energy yield of the plasma-catalytic process is 91.7 gkWh−1. Probable reaction mechanisms of the plasma-catalytic removal of tetracycline hydrochloride were also proposed.  相似文献   

10.
A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.  相似文献   

11.
Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the electrodes of the reactor has the shape of a hollow screw which shows an enhanced efficiency compared with a traditional smooth structure. The experimentation was carried out with gas mixtures of 90% Ar–10% O_2, 80% Ar–20% O_2 and 0% Ar–100% O_2. After one hour of treatment the removal efficiency was 76%, 92%, and 97%, respectively, assessed with a gas chromatographic mass spectrometry technique. For both reactors used, the ozone concentration was measured. The screw electrode required less energy, for all gas mixtures, than the smooth electrode, to maintain the same ozone concentration. On the other hand, it was also observed that in both electrodes the electrical conductivity of the solution changed slightly from~0.0115 S m~(-1) up to ~0.0430 S m~(-1) after one hour of treatment. The advantages of using the hollow screw electrode structure compared with the smooth electrode were:(1) lower typical power consumption,(2) the generation of a uniform plasma throughout the reactor benefiting the phenol degradation,(3) a relatively lower temperature of the aqueous solution during the process, and(4) the plasma generation length is larger.  相似文献   

12.
Thermal flow characteristics and the methane conversion reaction in a low power arc plasma reactor for efficient storage and transport of methane, which is the main component of shale gas, were simulated. The temperature and velocity distributions were calculated according to the type of discharge gases and arc current level by a self-developed magnetohydrodynamics (MHD) code and a commercial ANSYS-FLUENT code; the transport of chemical species was analyzed as including the chemical reactions of methane conversion. The simulated results were verified by the comparison of calculated and measured arc voltages with permissible low error as under 4%. Three C2 hydrocarbon gases with ethane (C2H6), ethylene (C2H4), and acetylene (C2H2) were selected as the converted species of methane from experimental data. The mass fraction of C2 hydrocarbons and hydrogen as the product of the conversion reaction at the reactor was also calculated. Those values show good agreement with the actual experimental results in that the major conversion reaction occurred in C2H2 and hydrogen, and the conversions to C2H6, C2H4, and hydrogen were minor reactions of methane pyrolysis conversion.  相似文献   

13.
The choice of the best material exposed to the plasma in a future reactor is still an open question. One of main requirements to be satisfied is the capability to withstand high heat loads, in the range 10–20 MW/m2, during normal operations in a future reactor, as well as the peak power released by ELMs in H-mode operation. On FTU, since the end of 2005, we have started an innovative program having as main goal the possibility to expose a liquid surface to the plasma. The small wetted area, of the FTU three liquid lithium limiter units, does not allow to use it as main limiter for all the duration of the discharge so that it is always set in the shadow of the main toroidal limiter. In this condition, heat loads up to 2 MW/m2 are normally withstood by the liquid lithium limiter without any surface damage and problems to the FTU operations. In order to increase the heat load on the liquid lithium limiter for a controlled limited period, the plasma column is shifted towards the liquid lithium limiter during the discharge. The surface temperature remains constant although the plasma column is pushed on the liquid lithium limiter. This saturation of the surface temperature can be understood considering the dependence of the evaporation rate versus the surface temperature between 250 °C and 550 °C that increases by five orders of magnitude. The evaporated lithium forms a strongly radiative cloud all around the three units limiting the power load on the surface. We do not observe any accumulation of lithium into the discharge as it can be also inferred from the time evolution of the Li III line growing up until the temperature is reaching the maximum value and then remaining almost constant.  相似文献   

14.
There is a substantial market for nuclear energy in non-electric applications such as hydrogen production or water desalination. Among the Generation IV reactor concepts, the very high temperature reactor (VHTR) with a reactor outlet temperature close to 1000 °C and a power conversion efficiency of approximately 50% is believed to be the most suitable concept for co-generation of process heat. Its high coolant exergy would enable centralized hydrogen production and other process heat applications. In this paper it is shown that a reactor with lower coolant outlet temperature or another near-term heat source can also meet the VHTR objectives which are high power conversion efficiency and capability to deliver high temperature process heat in the narrow temperature window required by thermochemical hydrogen production cycles. The approach was to separate the requirement for high temperature process heat production from the nuclear part of the plant, in other words the nuclear part of the power plant would run at acceptably low temperature while the high temperature heat production via a heat pump system would be limited to a conventional external circuit, thus avoiding nuclear constraints. The separation of these high temperature constraints from the reactor would avoid massive R&D requirements on materials, components and fuel with uncertain outcome thus unnecessarily delaying introduction of this otherwise very attractive reactor concept.We then show that the proposed technology is equally suitable for the generation of cold (e.g. for air conditioning) and for desalination of seawater.  相似文献   

15.
The oxygen plasma reactor based on dielectric barrier discharge principle can produce a high concentration of reactive oxygen species, which can cooperate with hydraulic cavitation gas–liquid mixer to realize the application of advanced oxidation technology in water treatment. In this technology, the work pressure of the oxygen plasma reactor is decreased by the vacuum suction effect generated in the snap-back section of the gas–liquid mixed container. In this paper, the characteristics of single micro-discharge at different pressures were investigated with the methods of discharge image, electrical characteristics and spectral diagnosis, in order to analyze the electrical characteristics and reactive oxygen species generation efficiency of oxygen plasma reactor at the pressure range from 60 kPa to 100 kPa. The study indicated that, when the pressure decreases, the duty ratio of ionization in the discharge gap and number of electrons with high energy increases, leading to a rise in reactive oxygen species production. When the oxygen reaches the maximum ionization, the concentration of reactive oxygen species is the highest. Then, the discharge intensity continues to increase, producing more heat, which will decompose the ozone and lower the production of reactive oxygen species. The oxygen plasma reactor has an optimum working pressure at different input powers, which makes the oxygen plasma reactor the most efficient in generating reactive oxygen species.  相似文献   

16.
《等离子体科学和技术》2015,17(12):1053-1060
A discharge plasma reactor with a point-to-plane structure was widely studied experimentally in wastewater treatment.In order to improve the utilization efficiency of active species and the energy efficiency of this kind of discharge plasma reactor during wastewater treatment,the electrode configuration of the point-to-plane corona discharge reactor was studied by evaluating the effects of discharge spacing and adjacent point distance on discharge power and discharge energy density,and then dye-containing wastewater decoloration experiments were conducted on the basis of the optimum electrode configuration.The experimental results of the discharge characteristics showed that high discharge power and discharge energy density were achieved when the ratio of discharge spacing to adjacent point distance(d/s) was 0.5.Reactive Brilliant Blue(RBB) wastewater treatment experiments presented that the highest RBB decoloration efficiency was observed at d/s of 0.5,which was consistent with the result obtained in the discharge characteristics experiments.In addition,the biodegradability of RBB wastewater was enhanced greatly after discharge plasma treatment under the optimum electrode configuration.RBB degradation processes were analyzed by GC-MS and IC,and the possible mechanism for RBB decoloration was also discussed.  相似文献   

17.
An electric discharge plasma reactor combined with a catalytic reactor was studied for removing nitrogen oxides. To understand the combined process thoroughly, discharge plasma and catalytic process were separately studied first, and then the two processes were combined for the study. The plasma reactor was able to oxidize NO to NO2 well although the oxidation rate decreased with temperature. The plasma reactor alone did not reduce the NOx (NO NO2) level effectively, but the increase in the ratio of NO2 to NO as a result of plasma discharge led to the enhancement of NOx removal efficiency even at lower temperatures over the catalyst surface (V2O5-WO3/TiO2). At a gas temperature of 100℃, the NOx removal efficiency obtained using the combined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/L  相似文献   

18.
Nanofluids, colloidal dispersions of nanoparticles, exhibit a substantially higher critical heat flux (CHF) compared to water. As such, they could be used to enhance the in-vessel retention (IVR) capability in the severe accident management strategy implemented by certain light-water reactors. It is envisioned that, at normal operating conditions, the nanofluid would be stored in dedicated storage tanks, which, upon actuation, would discharge into the reactor cavity through injection lines. The design of the injection system was explored with risk-informed analyses and computational fluid dynamics. It was determined that the system has a reasonably low failure probability, and that, once injected, the nanofluid would be delivered effectively to the reactor vessel surface within seconds. It was also shown analytically that the increase in decay power removal through the vessel using a nanofluid is about 40%, which could be exploited to provide a higher IVR safety margin or, for a given margin, to enable IVR at higher core power. Finally, the colloidal stability of a candidate alumina-based nanofluid in an IVR environment was experimentally investigated, and it was found that this nanofluid would be stable against dilution, exposure to gamma radiation, and mixing with boric acid and lithium hydroxide, but not tri-sodium phosphate.  相似文献   

19.
EAST强流离子源电源系统的初步测试运行   总被引:1,自引:0,他引:1  
测试NBI大功率强流离子源的综合测试台正在建设,已研制了离子源等离子体发生器电源系统、等离子体电极高压电源及梯度极分压器、抑制极负高压电源等电源系统,以及高压传输线及缓冲器,在测试台上开展了对EAST中性束注入器第一台兆瓦级强流离子源样机进行整体电源系统测试和离子源起弧放电的初步测试,完成了离子源电源系统初步性能测试及...  相似文献   

20.
The basic fusion driver requirements of a toroidal materials production reactor are considered. The tokamak, stellarator, bumpy torus, and reversed-field pinch are compared with regard to their demonstrated performance, probable near-term development, and potential advantages and disadvantages if used as reactors for materials production. Of the candidate fusion drivers, the tokamak is determined to be the most viable for a near-term production reactor. Four tokamak reactor concepts (TORFA/FED-R, AFTR/ZEPHYR, Riggatron, and Superconducting Coil) of approximately 500-MW fusion power are compared with regard to their demands on plasma performance, required fusion technology development, and blanket configuration characteristics. Because of its relatively moderate requirements on fusion plasma physics and technology development, as well as its superior configuration of production blankets, the TORFA/FED-R type of reactor operating with a fusion power gain of about 3 is found to be the most suitable tokamak candidate for implementation as a near-term production reactor.This paper represents work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing from its 1982 version (except for Tables II and III and Fig. 1), explaining the fact that some of the material is dated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号