首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Explicit spatial analysis of infectious disease processes recognizes that host-pathogen interactions occur in specific locations at specific times and that often the nature, direction, intensity and outcome of these interactions depend upon the particular location and identity of both host and pathogen. Spatial context and geographical landscape contribute to the probability of initial disease establishment, direction and velocity of disease spread, the genetic organization of resistance and susceptibility, and the design of appropriate control and management strategies. In this paper, we review the manner in which the physical organization of the landscape has been shown to influence the population dynamics and spatial genetic structure of host-pathogen interactions, and how we might incorporate landscape architecture into spatially explicit population models of the infectious disease process to increase our ability to predict patterns of disease occurrence and optimally design vaccination and control policies.  相似文献   

2.
Rotavirus is a major cause of mortality in developing countries, and yet the dynamics of rotavirus in such settings are poorly understood. Rotavirus is typically less seasonal in the tropics, although recent observational studies have challenged the universality of this pattern. While numerous studies have examined the association between environmental factors and rotavirus incidence, here we explore the role of intrinsic factors. By fitting a mathematical model of rotavirus transmission dynamics to published age distributions of cases from 15 countries, we obtain estimates of local transmission rates. Model-predicted patterns of seasonal incidence based solely on differences in birth rates and transmission rates are significantly correlated with those observed (Spearman''s ρ = 0.65, p < 0.05). We then examine seasonal patterns of rotavirus predicted across a range of different birth rates and transmission rates and explore how vaccination may impact these patterns. Our results suggest that the relative lack of rotavirus seasonality observed in many tropical countries may be due to the high birth rates and transmission rates typical of developing countries rather than being driven primarily by environmental conditions. While vaccination is expected to decrease the overall burden of disease, it may increase the degree of seasonal variation in the incidence of rotavirus in some settings.  相似文献   

3.
Incidence of infection time-series data for the childhood diseases measles, chicken pox, rubella and whooping cough are described in the language of multifractals. We explore the potential of using the wavelet transform maximum modulus (WTMM) method to characterize the multiscale structure of the observed time series and of simulated data generated by the stochastic susceptible-exposed-infectious-recovered (SEIR) epidemic model. The singularity spectra of the observed time series suggest that each disease is characterized by a unique multifractal signature, which distinguishes that particular disease from the others. The wavelet scaling functions confirm that the time series of measles, rubella and whooping cough are clearly multifractal, while chicken pox has a more monofractal structure in time. The stochastic SEIR epidemic model is unable to reproduce the qualitative singularity structure of the reported incidence data: it is too smooth and does not appear to have a multifractal singularity structure. The precise reasons for the failure of the SEIR epidemic model to reproduce the correct multiscale structure of the reported incidence data remain unclear.  相似文献   

4.
Mathematical models describing indirect contact transmission are an important component of infectious disease mitigation and risk assessment. A model that tracks microorganisms between compartments by coupled ordinary differential equations or a Markov chain is benchmarked against a mechanistic interpretation of the physical transfer of microorganisms from surfaces to fingers and subsequently to a susceptible person''s facial mucosal membranes. The primary objective was to compare these models in their estimates of doses and changes in microorganism concentrations on hands and fomites over time. The abilities of the models to capture the impact of episodic events, such as hand hygiene, and of contact patterns were also explored. For both models, greater doses were estimated for the asymmetrical scenarios in which a more contaminated fomite was touched more often. Differing representations of hand hygiene in the Markov model did not notably impact estimated doses but affected pathogen concentration dynamics on hands. When using the Markov model, losses due to hand hygiene should be handled as separate events as opposed to time-averaging expected losses. The discrete event model demonstrated the effect of hand-to-mouth contact timing on the dose. Understanding how model design influences estimated doses is important for advancing models as reliable risk assessment tools.  相似文献   

5.
Spatial connectivity plays an important role in mosquito-borne disease transmission. Connectivity can arise for many reasons, including shared environments, vector ecology and human movement. This systematic review synthesizes the spatial methods used to model mosquito-borne diseases, their spatial connectivity assumptions and the data used to inform spatial model components. We identified 248 papers eligible for inclusion. Most used statistical models (84.2%), although mechanistic are increasingly used. We identified 17 spatial models which used one of four methods (spatial covariates, local regression, random effects/fields and movement matrices). Over 80% of studies assumed that connectivity was distance-based despite this approach ignoring distant connections and potentially oversimplifying the process of transmission. Studies were more likely to assume connectivity was driven by human movement if the disease was transmitted by an Aedes mosquito. Connectivity arising from human movement was more commonly assumed in studies using a mechanistic model, likely influenced by a lack of statistical models able to account for these connections. Although models have been increasing in complexity, it is important to select the most appropriate, parsimonious model available based on the research question, disease transmission process, the spatial scale and availability of data, and the way spatial connectivity is assumed to occur.  相似文献   

6.
Infectious salmon anemia (ISA) is one of the main infectious diseases in Atlantic salmon farming with major economical implications. Despite the strong regulatory interventions, the ISA epidemic is not under control, worldwide. We study the data covering salmon farming in Norway from 2002 to 2005 and propose a stochastic space-time model for the transmission of the virus. We model seaway transmission between farm sites, transmission through shared management and infrastructure, biomass effects and other potential pathways within the farming industry. We find that biomass has an effect on infectiousness, the local contact network and seaway distance of 5 km represent similar risks, but a large component of risk originates from other sources, among which are possibly infected salmon smolt and boat traffic.  相似文献   

7.
Back-calculation is a process whereby generally unobservable features of an event leading to a disease outbreak can be inferred either in real-time or shortly after the end of the outbreak. These features might include the time when persons were exposed and the source of the outbreak. Such inferences are important as they can help to guide the targeting of mitigation strategies and to evaluate the potential effectiveness of such strategies. This article reviews the process of back-calculation with a particular emphasis on more recent applications concerning deliberate and naturally occurring aerosolized releases. The techniques can be broadly split into two themes: the simpler temporal models and the more sophisticated spatio-temporal models. The former require input data in the form of cases'' symptom onset times, whereas the latter require additional spatial information such as the cases'' home and work locations. A key aspect in the back-calculation process is the incubation period distribution, which forms the initial topic for consideration. Links between atmospheric dispersion modelling, within-host dynamics and back-calculation are outlined in detail. An example of how back-calculation can inform mitigation strategies completes the review by providing improved estimates of the duration of antibiotic prophylaxis that would be required in the response to an inhalational anthrax outbreak.  相似文献   

8.
Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps.  相似文献   

9.
In an attempt to maintain the elimination of COVID-19 in New Zealand, all international arrivals are required to spend 14 days in government-managed quarantine and to return a negative test result before being released. We model the testing, isolation and transmission of COVID-19 within quarantine facilities to estimate the risk of community outbreaks being seeded at the border. We use a simple branching process model for COVID-19 transmission that includes a time-dependent probability of a false-negative test result. We show that the combination of 14-day quarantine with two tests is highly effective in preventing an infectious case entering the community, provided there is no transmission within quarantine facilities. Shorter quarantine periods, or reliance on testing only with no quarantine, substantially increases the risk of an infectious case being released. We calculate the fraction of cases detected in the second week of their two-week stay and show that this may be a useful indicator of the likelihood of transmission occurring within quarantine facilities. Frontline staff working at the border risk exposure to infected individuals and this has the potential to lead to a community outbreak. We use the model to test surveillance strategies and evaluate the likely size of the outbreak at the time it is first detected. We conclude with some recommendations for managing the risk of potential future outbreaks originating from the border.  相似文献   

10.
This paper proposes a generalization of the explicit central‐difference time integration scheme, using a time step variable not only in time but also in space. The solution at each element/node is advanced in time following local rather than global stability limitations. This allows substantial saving of computer time in realistic applications with non‐uniform meshes, especially in multi‐field problems like fluid–structure interactions. A binary scheme in space is used: time steps are not completely arbitrary, but stay in a constant ratio of two when passing from one partition level to the next one. This choice greatly facilitates implementation (via an integer‐based logic), ensures inherent synchronization and avoids any interpolations, necessary in other partitioning schemes in the literature, but which may reduce numerical stability. The mesh partition is automatically built up and continuously updated by simple spatial adjacency considerations. The resulting algorithm deals automatically with large variations in time of stability limits. The paper introduces the core spatial partitioning technique in the Lagrangian formulation. Some academic numerical examples allow a detailed comparison with the standard, spatially uniform algorithm. A final more realistic example shows the application of partitioning in simulations with arbitrary Lagrangian Eulerian formulation and fully‐coupled boundary conditions (fluid–structure interaction). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The sustained transmission and spread of environmentally mediated infectious diseases is governed in part by the dispersal of parasites, disease vectors and intermediate hosts between sites of transmission. Functional geospatial models can be used to quantify and predict the degree to which environmental features facilitate or limit connectivity between target populations, yet typical models are limited in their geographical and analytical approach, providing simplistic, global measures of connectivity and lacking methods to assess the epidemiological implications of fine-scale heterogeneous landscapes. Here, functional spatial models are applied to problems of surveillance and control of the parasitic blood fluke Schistosoma japonicum and its intermediate snail host Oncomelania haupensis in western China. We advance functional connectivity methods by providing an analytical framework to (i) identify nodes of transmission where the degree of connectedness to other villages, and thus the potential for disease spread, is higher than is estimated using Euclidean distance alone and (ii) (re)organize transmission sites into disease surveillance units based on second-order relationships among nodes using non-Euclidean distance measures, termed effective geographical distance (EGD). Functional environmental models are parametrized using ecological information on the target organisms, and pair-wise distributions of inter-node EGD are estimated. A Monte Carlo rank product analysis is presented to identify nearby nodes under alternative distance models. Nodes are then iteratively embedded into EGD space and clustered using a k-means algorithm to group villages into ecologically meaningful surveillance groups. A consensus clustering approach is taken to derive the most stable cluster structure. The results indicate that novel relationships between nodes are revealed when non-Euclidean, ecologically determined distance measures are used to quantify connectivity in heterogeneous landscapes. These connections are not evident when analysing nodes in Euclidean space, and thus surveillance and control activities planned using Euclidean distance measures may be suboptimal. The methods developed here provide a quantitative framework for assessing the effectiveness of ecologically grounded surveillance systems and of control and prevention strategies for environmentally mediated diseases.  相似文献   

13.
Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matches/mismatches between demographic rates and epidemiological dynamics and (ii) delayed infection (arising from insusceptibility and maternal antibodies in juveniles) are important factors in determining disease severity and local population persistence of rabbits. We found that both the timing of reproduction and exposure to viruses drove recurrent seasonal epidemics of RHD. Protection conferred by insusceptibility and maternal antibodies controlled seasonal disease outbreaks by delaying infection; this could have also allowed escape from disease. The persistence of local populations was a stochastic outcome of recovery rates from both RHD and myxomatosis. If susceptibility to RHD is delayed, myxomatosis will have a pronounced effect on population extirpation when the two viruses coexist. This has important implications for wildlife management, because it is likely that such seasonal interplay and disease dynamics has a strong effect on long-term population viability for many species.  相似文献   

14.
Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV''s wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Niño Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.  相似文献   

15.
首先剖析了空间关系描述中"空间"的概念,论述了拓扑关系具有与实体位置本身无关的特性,进而阐述了空间实体的拓扑表达,分析了拓扑空间描述存在的不足,以及与地理环境、地理空间认知的相关性,提出了纳入度量特性的拓扑空间关系描述的方法。  相似文献   

16.
经过20多年的发展,中国已可以利用遥感、地理信息系统、全球定位系统等空间技术对洪涝、干旱、森林/草原火灾、地下煤火、雪灾、赤潮、台风、滑坡/泥石流、沙尘暴等自然灾害进行监测、评估与预警研究,也可以对空气质量、水环境及生态环境进行监测与评价。为了能够实现大范围、全天候、快速、动态的环境和灾害监测,进一步提高环境监测和综合减灾能力,中国将分阶段发射由4颗光学小卫星和4颗合成孔径雷达小卫星组成的环境与灾害监测预报小卫星星座,通过卫星系统、地面系统、应用系统的建设,最终实现天地一体化的灾害及环境监测、应急、决策支  相似文献   

17.
赵梅  胡长青 《声学技术》2010,29(4):365-369
针对浅海倾斜海底海洋环境,对声场的空间相关性进行了研究。利用抛物方程法,对浅海声场的空间相关系数进行数值模拟,并结合2001年东中国海中美联合实验数据,分析了声场空间相关系数与海底倾斜角度、接收阵元与参考阵元的间隔、参考阵元深度及声源深度之间的关系。对于上坡海底,浅海声场空间相关性随着海底倾斜角度、接收阵元与参考阵元间隔的变大而变弱,且垂直相关系数随着接收阵元与参考阵元间隔的增大,先衰减再出现起伏。  相似文献   

18.
Spatial dependence into environmental data is an influential criterion in clustering processes, as the resulting clustering outputs depend very much upon such spatial structure. As classical methods do not take spatial dependence in consideration, the inclusion of this structure produces unexpected but more realistic results and clusters of curves that may not be similar in shape or behavior. In this paper, clustering is made using the KMSCFD algorithm for spatially correlated functional data. The methodology was developed through weighting the distance matrix between the curves with the trace-variogram calculated with the coefficients of the basis functions resulting from a data smoothing operation. For the validation of the method, a number of simulated scenarios were tested together with an application to Normalized Difference Vegetation Index data derived from a high elevation ecosystem in the Ecuadorian Andes. Quality indices are implemented to obtain the appropriate number of clusters. The analysis showed five different regions that were latitudinally distributed.  相似文献   

19.
铁电液晶空间光调制器响应特性的研究   总被引:4,自引:0,他引:4  
以铁电液晶为非线性介质建立了光寻址空间光调制器的等效电路,并以写入光和擦除光为控制参变量,利用电路分析软件Pspice模拟了该光调制器的光电响应特性。结果表明,电路方法得到的上升时间在微秒(μs)量级上,擦除效应的临界值在毫瓦每平方米(mW/cm^2)量级上;光电响应速度随写入光强(擦除光强)的增大而加快(减慢),均与相关文献的实验结果吻合。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号