首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
载流条件下铬青铜/纯铜摩擦副摩擦磨损性能研究   总被引:4,自引:0,他引:4  
在自制的销盘摩擦磨损试验机上,对铬青铜/纯铜摩擦副进行载流条件下的干滑动模拟试验,研究了电流、速度、载荷对铬青铜/纯铜摩擦磨损性能的影响规律。试验结果表明:电流是影响摩擦副摩擦磨损性能最显著的因素,摩擦因数和磨损率都随着电流的增大而增大;速度和载荷对摩擦因数和磨损率也有显著影响;电流的存在,摩擦副间产生了比无电流时更严重的粘着磨损和塑性变形,同时增加了电化学腐蚀,使磨损更加严重。  相似文献   

2.
在HST-100载流高速摩擦磨损试验机上,对比考察了紫铜/铬青铜摩擦副在干摩擦和水雾2种状态下的载流摩擦磨损性能,采用扫描电镜(SEM)对磨损表面形貌进行了观测。结果表明:水雾条件下销试样载流摩擦磨损时,其摩擦因数及磨损率均低于纯载流状态下;该试样在纯载流条件下的磨损机制主要为粘着磨损和电气磨损,在水雾条件下主要为电弧侵蚀、塑性变形和轻微的粘着磨损。这是因为水有利于降低摩擦副接触表面的温度,有效地抑制了铜的转移,阻止了粘着磨损的发生。水因素的介入也导致了电弧发生频率的增多,但在综合影响下,水可以有效地改善该试样的磨损性能。  相似文献   

3.
以3D碳/碳复合材料为销试样、铬青铜QCr0.5为盘试样进行了载流条件下的干滑动摩擦磨损试验。通过对有、无电流条件下销试样磨损量大小和摩擦因数影响度的比较,以及对销试样摩擦表面进行的微观形貌分析,结果表明,电流对铬青铜/3D碳/碳复合材料摩擦副的干摩擦行为具有显著的影响,并且由于电场、摩擦热、电弧热的共同作用,在销试样表层发生了磨粒磨损和氧化磨损。  相似文献   

4.
以黄铜/铬青铜为摩擦副,在销-盘式摩擦磨损试验机上进行了载流摩擦学特性研究,探讨了载流条件下摩擦副的表面粗糙度对摩擦学特性的影响.结果表明:摩擦副表面粗糙度存在一个最佳值,使质量磨损率最小,载流效率、载流稳定性也较好;摩擦因数先随表面粗糙度的降低而升高,当表面粗糙度降低到一定程度以后摩擦因数的变化趋于平稳.质量磨损率随着表面粗糙度的降低先减小后增大;载流导致质量磨损率增大,且随着电流密度的增大,这种影响更加显著.  相似文献   

5.
通过销-盘摩擦磨损试验,研究了碳/铜摩擦副在有无电流条件下的摩擦学性能。结果表明:试验过程中摩擦副温度不断地升高,且有电流时摩擦副温度比无电流时高,滑板材料的磨损量随着温度的升高而增大;当无电流通过时,摩擦因数随温度的升高先增大后减小,当有电流通过时,摩擦因数随温度的升高而减小。观察碳滑板磨损前后表面形貌发现:磨损表面随摩擦副温度的升高变得越来越光滑;当无电流通过时,磨粒磨损和黏着磨损是主要磨损类型,当有电流通过时,磨损类型以氧化磨损和电弧烧蚀为主。碳滑板材料磨损表面EDS分析发现,元素转移和氧化现象在磨损过程中时有发生。  相似文献   

6.
借助于HST-100高速载流摩擦磨损试验机,研究载荷的波动大小对C/C复合材料/铬青铜摩擦副载流摩擦磨损性能的影响,利用扫描电镜对磨损表面进行观察分析。结果表明:随着载荷波动的加剧,平均电流逐渐减小,载流效率降低,离线率和电弧能量逐渐增大;C/C复合材料的摩擦因数和磨损率均呈现先减小然后增大的趋势;摩擦过程中的磨损机制逐渐由磨粒磨损转变为磨粒磨损、电气磨损共同作用。  相似文献   

7.
根据列车受电弓系统的实际工况条件,在自制的销-盘式载流摩擦磨损试验机上研究了Al2O3弥散强化铜合金销试样和黄铜(H62)盘试样摩擦副在载流条件下的滑动摩擦磨损性能,试验条件为速度20m/s、载荷0.63MPa、电流25-75A。试验结果表明,电流对黄铜/Al2O3弥散强化铜合金摩擦副的滑动干摩擦行为具有显著影响。随电流的增加,销试样的磨损率增加,摩擦因数增大,试样表层发生了磨粒磨损和粘着磨损。  相似文献   

8.
在MMU-10屏显式材料端面摩擦磨损试验机上采用环-环接触摩擦方式,研究了WC-Ni硬质合金与SiC陶瓷材料异配对摩擦副在干摩擦条件下的摩擦磨损性能,并与WC-Ni/WC-Ni硬质合金自配对摩擦副的摩擦磨损性能进行对比.利用扫描电子显微镜与能谱仪对摩擦副的磨损表面进行了观察和分析.结果表明:在相同试验条件下,对比WC-Ni/WC-Ni硬质合金自配对摩擦副,WC-Ni/ SiC摩擦副的摩擦因数稍低点;WC-Ni/ SiC摩擦副的磨损机制主要为磨粒磨损,而WC-Ni/WC-Ni摩擦副磨损机制为粘着磨损兼氧化磨损;由于WC-Ni/WC-Ni摩擦副的磨损表面发生氧化反应和焊合效应,配对效果劣于WC-Ni/ SiC摩擦副.  相似文献   

9.
以铜基粉末冶金/铬青铜摩擦副为对象,应用销盘式摩擦磨损模拟试验,研究载流条件下摩擦副的表面粗糙度对摩擦学特性的影响规律.结果表明:表面越粗糙,越易起弧,形成更高的电弧能量,磨损形式主要是磨粒磨损、电弧侵蚀;表面越光滑,燃弧时间越长,电弧能量越高,摩擦因数越低,磨损形式主要是黏着磨损、电弧侵蚀;表面粗糙度有一个最佳值,在这个表面粗糙度下电弧能量最小、质量磨损率也最小.  相似文献   

10.
在销/盘式载流摩擦磨损试验机上,对铜基粉末冶金/铬青铜摩擦副载流摩擦磨损的电弧侵蚀特性进行了研究,探讨了电弧对铜基粉末冶金材料的载流摩擦学特性的影响.利用方差分析表,采用F检验法对电流、载荷、速度3种因素进行了显著性检验.结果显示电流对电弧能量的大小有影响,载荷、速度对电弧能量有显著影响;随着速度的增加,电弧的强度和发生频率均增大;低速下,主要是磨粒磨损和粘着磨损,高速下,主要是电弧侵蚀和粘着磨损.  相似文献   

11.
研究了电流强度的变化(4A/cm2~16A/cm2)对碳纤维-铜-石墨复合电刷材料电磨损性能的影响,并与纯机械磨损进行了对比;用扫描电镜对复合材料磨面进行了观察分析,探讨了电磨损机理.  相似文献   

12.
切槽车刀工作环境封闭,工作状况恶劣,使得刀具温度高和刀具磨损的问题尤为突出。运用数值计算方法建立了硬质合金切槽车刀车削加工钛合金环槽过程模型,基于传热学和Usui磨损理论计算车削过程中刀具最高温度和刀具磨损速率。对环槽车削过程的热力耦合计算结果进行分析,获得了刀具在切削过程中的温度及磨损速率的变化规律。建立了刀具温度和磨损速率的预测模型,运用遗传算法对预测模型进行求解,得到满足要求的工艺参数组合。结果表明,刀具温度和磨损速率与工艺参数之间关系密切。通过应用优化算法对切削工艺参数进行优化,使得目标函数值增加了30%,运用切削实验验证了优化后的工艺参数能够有效提高硬质合金切槽车刀的性能。  相似文献   

13.
In this work, a bronze matrix (90 wt% Cu + 10 wt% Sn) was reinforced with SiC and graphite particulates using mechanical alloying and a subsequent current sintering technique. The mechanically ball-milled bronze hybrid matrix composite powders reinforced with 5.0 wt% SiC and 5.0 wt% graphite were cold-compacted on a 1040 steel substrate under a pressure of 300 MPa. The compacted structure was sintered at atmospheric conditions to nearly a full density within 10 min using current sintering, in which the powders were heated by a low voltage and high current and compressed simultaneously. The samples were sintered at three different applied currents (1,500, 1,700, and 1,900 A) to provide dense and well-bonded coatings on steel substrates. Microhardness testing and optical and scanning electron microscopes (SEM) were used for microstructural characterization of the hybrid composites. The tribological characterization of the resulting composites was tested by a block-on-disk method for determination of the wear loss and friction coefficient behaviors against a steel disk. It was pointed out that increasing applied current during the sintering/coating process resulted in obtaining high-hardness and wear-resistant hybrid composite coatings.  相似文献   

14.
Tribology and oxidation behavior of TiN/AlN nano-multilayer films   总被引:2,自引:0,他引:2  
In this study, a series of TiN/AlN nano-multilayer films were prepared using a new sputtering setup, which features a medium frequency (MF) twin unbalanced magnetron sputtering system (UBMS) and a DC balanced magnetron sputtering system (BMS). The MF (6.78 MHz) twin UBMS, which is a modification of single RF power source system, is a special design of this deposition machine. The UBMS was employed to deposit the AlN film, and the BMS the TiN film. The aim of this study was to obtain, through controlling the deposition conditions, a group of TiN/AlN nano-multilayer films with various periods (λ). Then a series of experiments were conducted to understand their wear and oxidation properties.The results revealed that through controlling of the deposition parameters, the TiN/AlN nano-multilayer films with λ ranging from 2.4 to 67.6 nm were obtained. At λ3.6 nm, the nano-multilayers had extremely high hardness and excellent adhesion. The oxidation tests found that the multilayers had obviously better anti-oxidation property, as compared with the single-layer TiN film. The high hardness and good oxidation resistance contributed to very good wear performance of the TiN/AlN nano-multilayer films.  相似文献   

15.
The high strength, low weight, and outstanding corrosion resistance properties possessed by titanium alloys have led to a wide range of successful applications in aerospace, automotive, and chemical industries and in power generation. Titanium alloys are characterized by poor wear resistance properties and their utilization has been excessive in nontribological applications. Surface texturing is a well-known and effective means of surface modification to improve the tribological properties of sliding surfaces. In the present work, modification of titanium alloy surfaces (Ti6Al4V) was done by lapping and laser surface texturing. The wear-resistant coating, AlCrN, was applied over the modified titanium alloy surfaces, with and without a chromium interlayer. Linear reciprocating sliding wear tests were performed with ball-on-flat contact geometry to evaluate the tribological performance of the coated alloy. The tests were performed under different normal loads for a period of 105 cycles at a frequency of 5 Hz. The friction force between the contact pair and displacement of the ball were simultaneously observed using a force transducer and laser displacement sensor. Optical microscopy was used to quantify the wear volume by measuring the wear scar diameter on both the specimen and the counterbody. Scanning electron microscopy (SEM) was employed to study the morphology of the wear scar. The characteristic behavior of the AlCrN coating such as bonding strength, wear volume, wear rate, and coefficient of friction with the chromium interlayer was evaluated and compared with the coating directly applied over the substrate. The coating on the textured surface, with the chromium interlayer showed better tribological performance.  相似文献   

16.
Friction and wear behavior was determined for zirconia ceramics lubricated with solid coatings (Ag, Au, and Nb) deposited by ion-beam-assisted-deposition (IBAD) techniques, and a polyol-ester-based synthetic oil. Although the use of soft Ag and Au coatings as solid lubricants in conjunction with the synthetic oil significantly reduced the fiction and wear under boundary lubrication at temperatures up to 250°C, these films had poor durability. In contrast, the Nb coating was more durable in terms of chemical reactivity and adhesion during the tribo-tests than were the Ag or Au films. However, the friction and wear behavior of the Nb-coated zirconia was poorer than that of the ceramics coated with Ag or Au.  相似文献   

17.
In order to determine the wear properties of AIP(Arc Ion Plating) deposition, wear process was evaluated by using a Falex test machine. Also, in order to determine the effects of coating material on the wear process, TiC, TiN, and TiCN coatings of thickness about 5 μrn — 6 μm coated by Arc ion plating deposition method were tested. The wear property was determined under a dry sliding condition as a function of the applied load, sliding distance, sliding velocity and temperature. The results show that when wear of the coating-layer occurred, specific wear amount increased with the wear rate. At initial state, the wear rate rapidly increased, but it gradually reduced as the velocity increased. Also, when raising the temperature, the wear rate increased in the order of TiCN, TiN and TiC due to the frictional heat.  相似文献   

18.
混合型轴承摩擦机理的研究   总被引:1,自引:0,他引:1  
采用Timken摩擦试验机在空气中,水、润滑油及合成油脂润滑状态下对M50钢、热静等压氮化硅陶瓷轴承元件的摩擦机理进行了研究.对各种参数包括速度、滑动距离和润滑剂进行了比较.  相似文献   

19.
In this paper, wear characteristics of magnesium alloy, AZ31B, and its nano-composites, AZ31B/nano-Al2O3, processed by the disintegrated melt deposition technique are investigated. The experiments were carried out using a pin-on-disk configuration against a steel disk counterface under different sliding speeds of 1, 3, 5, 7 and 10 m/s for 10 N normal load, and 1, 3 and 5 m/s for 30 N normal load. The worn samples and wear debris were then examined under a field emission scanning electron microscopy equipped with an energy dispersive spectrometer to reveal its wear features. The wear test results show that the wear rates of the composites are gradually reduced over the sliding speed range for both normal loads. The composite wear rates are higher than that of the alloy at low speeds and lower when sliding speed further increased. The coefficient of friction results of both the alloy and composites are in the range of 0.25–0.45 and reaches minimums at 5 m/s under 10 N and 3 m/s under 30 N load. Microstructural characterization results established different dominant mechanisms at different sliding speeds, namely, abrasion, delamination, oxidation, adhesion and thermal softening and melting. An experimental wear map was then constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号