首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以具有两亲结构的两亲性聚合物脂肪醇聚氧乙烯醚,通过回旋振荡涂覆法对疏水的聚四氟乙烯(PTFE)中空纤维膜改性处理制备亲水性聚四氟乙烯膜,在膜表面形成亲水沉积层,并研究了两亲性聚合物浓度、涂覆时间、热处理时间和热处理温度对PTFE中空纤维膜亲水性能的影响。结果表明,两亲性聚合物浓度为5%,涂覆时间2 h,热处理时间和温度分别为16 h和40℃条件下制备的聚四氟乙烯中空纤维膜,纯水通量可达2 482 L/(m2·h)。  相似文献   

2.
利用静电纺丝制造乙酸纤维素膜(CA纤维膜),并利用添加TiO2及脱乙酰基(d-CA)对CA纤维膜进行改性,后续对膜过滤特性、渗透通量、油水乳化液去除效率、反洗特性及积垢机制进行讨究。结果显示,CA纤维膜通过TiO2及d-CA改性后可以提高膜的热稳定性及亲水性能,并得到稳定的纯水通量和过滤通量;最佳的比例为TiO2@d-18.5%CA纤维膜,在40kPa跨膜压差、60min的操作条件下,其纯水通量、过滤通量、1g/L油水乳化液去除效率以及反洗后通量分别为824.8L/(m2·h)、(311.3±12.5)L/(m2·h)、93.6%±1.1%、451.5L/(m2·h);另外,添加TiO2可能导致油水乳化液在膜表面不可逆阻力比例的增加,脱乙酰基改性CA纤维膜则可以降低膜自身阻力及增加可逆阻力的比例,提高CA纤维膜在油水分离方面的潜力。  相似文献   

3.
由于聚四氟乙烯(PTFE)材料具有强疏水性和极低的表面能,使得PTFE中空纤维膜润湿性差,难以处理水性溶液,限制了其应用过程和领域,因此开展PTFE中空纤维膜亲水化改性研究具有重要的现实意义。利用仿生矿化技术对PTFE中空纤维膜进行表面改性,研究了不同矿化工艺对膜亲水性能的影响,并对改性前后PTFE中空纤维膜的官能团、水通量、气通量、孔径及孔径分布进行了表征。研究表明,仿生矿化能够提高PTFE中空纤维膜的亲水性和水通量,同时由于碳酸钙分子进入膜孔内部,使孔径分布更加均匀,平均孔径和气通量减小。  相似文献   

4.
根据片晶分离致孔的机理,利用羟基化改性聚丙烯(PPOH)与聚丙烯(PP)共混,通过熔融纺丝拉伸法制备具有一定亲水性的PP/PPOH中空纤维膜,探究了热处理温度及热拉伸温度对PP/PPOH中空纤维膜的结构与性能的影响。结果表明:当热处理温度为130℃时,PP/PPOH初纺中空纤维膜的结晶度高,力学性能较好,纯水通量为102.4 L/(m2·h);当热处理温度为130℃、热拉伸温度为130℃时,PP/PPOH中空纤维膜的结晶度最高,达39.4%,拉伸强度达93.1 MPa,表面微孔结构完善,纯水通量最高,达118.4 L/(m2·h)。  相似文献   

5.
利用氟碳表面活性剂、二氯甲烷为溶剂对聚四氟乙烯(PTFE)中空纤维膜进行亲水改性。研究了表面活性剂浓度及组装时间对中空纤维膜亲水性能的影响,确定了亲水改性的最佳条件为氟碳表面活性剂浓度为3g/L,PTFE中空纤维膜组装浸泡最佳时间4h,同时对亲水改性后PTFE中空纤维膜的污水处理效果进行了测试,结果表明其污水处理性能高于国家标准要求,化学需氧量去除率达到84.2%,氨氮去除率达到94.4%,悬浮物去除率达到99.0%。  相似文献   

6.
采用经过共混改性和嵌入-包埋改性2种亲水改性方法处理的聚丙烯(PP)分离膜进行性能研究。共混改性和嵌入包埋二次改性PP中空纤维膜在废水处理中均能稳定运行。研究表明,经过2种不同方法改性的PP中空纤维膜在-40 kPa下稳定运行通量分别为11.2、17.3 L/(m~2·h)。  相似文献   

7.
采用戊二醛和O-羧甲基壳聚糖(OCMCS)、聚乙烯醇(PVA)在聚四氟乙烯(PVDF)平板膜内进行交联形成一层水凝胶涂层,从而对PTFE平板膜进行亲水改性。考察了反应条件对膜亲水性能的影响和膜的抗污染性能,并对膜表面进行表征。结果表明,水凝胶涂层附着在PTFE纤维表面使膜原纤维变粗,随着PVA含量的增加,改性膜的水通量先增加后减少,接触角先减小后增大,并且当PVA与OCMCS的质量比为1:1,反应时间为6 h、温度为50℃时,膜的性能为优,此时水通量(4 481±80) L/(m~2·h)、接触角57.48°。由于改性膜的表面含有羟基和氨基等官能团,使膜具备良好的抗蛋白质吸附能力;PVA与OCMCS交联形成的物质分子量大,粘附力强,使亲水涂层不易脱落。  相似文献   

8.
使用材质为聚四氟乙烯(PTFE)和聚-4-甲基-1-戊烯(PMP)的两种中空纤维膜组件进行无泡充氧特性研究,分析回流量、进气压力和温度等因素对氧传质系数、氧传质速率(OTR)的影响。结果表明:当操作模式为错流,回流量为100 L/h,温度为34℃,进气压力为2、3 k Pa时,PTFE中空纤维膜的氧传质系数分别为0.302 4、0.388 9 h-1,OTR分别为0.107、0.133 g/(m2·h),PMP中空纤维膜组件的氧传质系数分别为0.248 2、0.302 4 h-1,OTR分别为0.085、0.102 g/(m2·h),两种膜组件的氧传质系数和OTR都随着进气压力的增大而增大;当进气压力为3 k Pa时,在回流量为25~100 L/h、温度为4~34℃范围内,随着回流量和温度的增大,氧传质系数与OTR均增大;实验选用的PTFE和PMP两种中空纤维膜组件无泡充氧性能,均明显优于传统微孔曝气方式,可为新型曝气方式的开发提供参考。  相似文献   

9.
为了改善聚丙烯(PP)非织造布的亲水性能,提高水通量,通过照射紫外光(UV)引发自由基聚合法,使丙烯酸树脂与HEMA在PP非织造布表面发生交联聚合反应,进行紫外光固化亲水改性。研究了亲水单体和光引发剂的浓度以及紫外光照射时间对聚丙烯非织造布亲水性能的影响。利用红外光谱和扫描电镜对改性PP非织造布表面的化学组成和形貌结构进行表征,通过接触角和水通量分析了改性后PP非织造布的亲水性和耐久性。结果表明,当丙烯酸树脂与HEMA的质量比为2∶1、固含量占亲水改性溶液总量的20%、光引发剂184的含量为2%、光照时间为15 s时,达到改性后PP非织造布的最优亲水性能,接触角由初始的126°下降至42°,水通量由5 543 L/(m2·h)提升至6 035 L/(m2·h),并且,具有良好的耐久性。  相似文献   

10.
目前采用多孔陶瓷膜进行膜蒸馏的技术已有不少研究,但由于膜本身的亲水特性,需要在使用前进行疏水改性,这增加了工序和成本,且疏水性随着使用过程逐渐减弱。因此,提出一种基于多孔陶瓷膜的脱硫废水负压式膜蒸馏方法,直接采用亲水性多孔陶瓷膜,通过泵的抽吸作用使膜内溶液形成负压,以防溶液渗出膜外。为探究负压式膜蒸馏的传热传质机理,通过实验对比了亲、疏水多孔陶瓷膜在不同工况下的传递特性。实验结果表明:当膜内负压值小于膜孔内溶液毛细力时,亲、疏水多孔陶瓷膜的膜孔内分别为溶液输运和水蒸气输运;当空气流量为22L/min、废水温度和流量分别为50℃和11L/h时,亲水膜的渗透通量在1.9~3.9kg/(m2·h)之间,而疏水膜的渗透通量仅为0.13~0.25kg/(m2·h);亲、疏水多孔陶瓷膜的热效率分别在92%和55%左右,说明亲水性多孔陶瓷膜有着更高的热效率,陶瓷膜的较高热导率有利于提升亲水膜的膜蒸馏性能;脱硫废水流量对热质传递性能影响不大,随着空气流量或者废水温度的增加,膜渗透通量随之增加。  相似文献   

11.
采用表面引发的电子转移再生活化剂原子转移自由基聚合,制备表面接枝有聚甲基丙烯酸羟乙酯链段的无机纳米粒子(SiO2–g-PHEMA)。将SiO2–g-PHEMA作为亲水性添加剂,与聚醚砜(PES)共混,制备PES/SiO2–g-PHEMA有机–无机复合膜。透射电子显微镜观察结果表明,改性后的SiO2–g-PHEMA纳米粒子可以均匀地分散在铸膜液体系中,并在成膜过程中向膜表面迁移富集,显著提高膜表面的亲水性(接触角由84.5°降至71.9°)。当纳米粒子的含量为1.0%(质量分数)时,此时膜拥有最大的纯水通量208.68L/(m2·h)和油水通量86.86L/(m2·h),而未改性的PES空白膜分别只有64.10和11.09 L/(m2·h)。相对于PES空白膜,通量恢复率从45.74%提高至78.32%,抗油污染能力大幅增强。而且,得益于PHEMA链段与PES链段之间的物理缠结及氢键作用,SiO2–g-PHEMA纳...  相似文献   

12.
《应用化工》2022,(9):2367-2371
采用聚多巴胺与亲水物质前驱体同步水解的方法,在膜表面生成杂化涂层,通过调整3-(2,3-环氧丙氧基)丙基三乙氧基硅烷(KH-561)与多巴胺的配比,制备了PVDF超滤改性膜。测试了杂化涂层对改性膜的表面形貌、亲水性、纯水通量、截留率等性能的影响。结果表明,杂化涂层不仅提高了改性膜的表面亲水能力,也改善了膜内部孔道的亲水性,PVDF改性膜的水接触角降至37.8°。膜水通量达到174 L/(m2·h),蛋白截留率达90%以上。杂化涂层在膜表面形成一层水膜,使膜具有良好的抗污染性能,改性膜的衰减系数最低可达0.19。  相似文献   

13.
目前用于处理含油废水的特殊润湿材料通常分为去油型和去水型,其仅局限分离单一乳液。本文基于多巴胺改性的聚偏氟乙烯(PVDF)膜,通过交替浸渍工艺和无纺布剥离,制备了具有不对称润湿性的Janus膜。通过调整交替次数以及剥离无纺布,可分别获得超亲水/水下超疏油的表面以及超疏水/超亲油的底面,水/水下油接触角(CA)差异高达150°。基于Janus膜的非对称润湿性,仅通过切换跨膜方向,对表面活性剂稳定的水包油(O/W)和油包水(W/O)乳液渗透通量高达367L/(m2·h)和1729L/(m2·h),其中水包油渗透液化学需氧量(COD)符合石油化工排放标准,油包水渗透液中水含量小于80mg/L,实现了对O/W和W/O乳液的高效分离。此外,Janus膜在牛血清蛋白(BSA)溶液分离过程中表现出理想的防污性能和可重复使用性。  相似文献   

14.
具备耐各种有机溶剂的微孔聚合物膜在有机纳滤领域逐渐受到重视。采用双氰基单体的超酸催化成环聚合反应,制备微孔框架聚合物薄膜(CTF-BP),该膜具备良好的力学性能,可耐受甲醇和正己烷等常见有机溶剂。CTFBP膜内大量<1.0 nm的微孔通道使膜具备良好的筛分性能,其截留分子量为550。膜内含有的三嗪结构与羟基具有较强的亲和性,使甲醇的跨膜通量[1.10 L/(m2·h·bar)]显著高于黏度更低的正己烷通量[0.23 L/(m2·h·bar)]。采用纳滤操作将膜用于分离含低浓度甲醇的正己烷溶液[含5%(质量)甲醇的正己烷溶液],结果显示甲醇/正己烷分离因子最高可达到1485,渗透液的总流量超过3.21 kg/(m2·h)。证实CTF-BP膜有望实现高效甲醇/正己烷分离。  相似文献   

15.
海水淡化技术是解决核电站淡水资源缺乏的一个重要途径。针对某核电站10 000 m3/d海水淡化系统的要求,采用“原水预处理(混凝沉淀+V型滤池)+反渗透预处理(超滤)+脱盐(两级反渗透)+后处理(矿化处理)”的处理工艺。其中混凝沉淀池总处理水量为1 800 m3/h;V型滤池滤速为9 m/h;超滤系统平均膜通量为72.9 L/(m2·h),回收率≥92%;一级反渗透系统平均膜通量为13.79 L/(m2·h),回收率45%,脱盐率≥99.3%;二级反渗透系统A平均膜通量为29.31 L/(m2·h),回收率85%,脱盐率≥97%;二级反渗透系统B平均膜通量为27.18 L/(m2·h),回收率85%,脱盐率≥97%;反渗透产水经过矿化设备,产水水质稳定能满足《生活饮用水卫生标准》(GB 5749-2006)的要求。该系统其运行成本为4.57元/m3。  相似文献   

16.
徐舜开  周准  柳斌 《水处理技术》2023,(1):37-40+45
通过湿法化学刻蚀得到单层MXene纳米片后,采用旋涂法将MXene纳米片负载至基膜上作为中间层制备聚酰胺复合纳滤膜,并探讨了MXene不同负载浓度对复合纳滤膜通量及盐截留性能的影响。结果表明引入MXene作为中间层,使得圆泡状形貌在所得膜表面形成,当旋涂1 mL浓度为0.1 g/L MXene时,通量为24.2 L/(m2·h),硫酸钠截留率为97.4%,相比传统膜(通量12.9 L/(m2·h),硫酸钠截留率96.3%)性能提升明显。随着MXene旋涂负载浓度增加,通量逐渐减小,而硫酸钠截留率则存在先增加后减小再稳定的趋势,截留率最高可达98.8%(通量16.3 L/(m2·h))。  相似文献   

17.
以亲水聚四氟乙烯(PTFE)膜为支撑体、以乙烯基三乙氧基硅烷(VTES)为偶联剂,利用乙烯基封端聚二甲基硅氧烷(PDMS)和聚甲基氢硅氧烷(PMHS)锁闭萃取剂磷酸二异辛酯(D2EHPA),制备三维网络萃取膜(3D-NEM),并将其用于重金属离子废水中镍元素的萃取分离。研究结果显示60℃、15 min的处理条件可以不破坏原支撑体结构并在其表面成功引入羟基,使构建的三维网络复合层锚定在改性后的支撑体表面。在料液相Ni2+浓度150 mg/L、萃取剂含量37%(质量)的条件下3D-NEM的6 h平均传质通量达最高值1560.28 mg·m-2·h-1。相互交联的三维网格结构有效地阻止了萃取剂流失,6 h运行平均通量衰减率仅有31.91%。与传统支撑液膜相比,本研究制备的3DNEM在亲水膜表面成功锚定超薄萃取功能层,体现出降低传质阻力与提升运行稳定性的双重优势。  相似文献   

18.
通过多巴胺的自聚附着行为,对聚四氟乙烯(PTFE)中空纤维膜进行亲水改性。采用扫描电镜(SEM)、X射线光电子能谱(XPS)、红外光谱(FT-IR)和接触角(CA)对膜改性前后的表面形貌、化学组成和亲水性进行了表征。研究了改性条件对膜纯水通量的影响,并以牛血清蛋白(BSA)溶液为污染物考察了改性前后膜的抗污染性能。结果表明,多巴胺被成功引入PTFE膜表面,改性12 h时膜表面的F元素含量降低2.14%,O元素含量增加3.06%。膜的亲水性得到显著改善,水接触角由改性前的110°降低至改性后的80°。改性8 h时,纯水通量达原膜通量的1.5倍。改性前后膜孔径变化不大,但改性后的PTFE膜具有更好的抗污染性能,清水清洗后的通量恢复率在90%以上。  相似文献   

19.
为改善PTFE中空纤维膜表面亲水性能,扩大其在污水处理领域中的运用,采用含有磺酸基、氨基、羟基、醛基、羧基的溶液浸渍预处理,利用低温等离子体法对PTFE中空纤维膜进行表面亲水改性。SEM、ATR-FTIR分析结果表明,PTFE中空纤维膜经过不同亲水基团改性后,磺酸基、氨基、羟基、醛基、羧基成功地接枝到PTFE膜表面。改性后的PTFE中空纤维膜的接触角和出水渗透压有较大幅度下降,其中经羧基改性后的PTFE中空纤维膜接触角最低下降为52°,出水渗透压下降为0.18MPa。5种亲水基团中,改性PTFE中空纤维膜最佳的亲水基团为羧基,最佳的预处理溶液为丙烯酸。  相似文献   

20.
为了提高哌嗪基聚酰胺纳滤膜的耐氯性,通过原位改性的方法在膜表面修饰了对氯稳定的3,5-二氨基-1,2,4-三唑(DAT)。DAT引入后,改性膜表面出现了更大、更多的结节结构,膜表面变得更加粗糙和亲水。在DAT质量分数为0.1%、交联时间为2 min的条件下,改性膜的纯水通量高达55.9 L/(m2·h),对无机盐的截留顺序为Na2SO4(96.7%)>MgSO4(79.5%)>MgCl2(33.7%)>NaCl(27.3%)。经不同pH次氯酸钠溶液浸泡后,未改性膜的表面结构被严重破坏,形成了巨大的聚合物颗粒,堵塞了水的传递路径,水通量下降了20%以上,分离性能恶化。而改性膜受到活性氯攻击很小,表面形貌较完整地保存下来,并且在保持较高盐截留率的同时,其水通量还有所上升,这对于构建耐氯脱盐纳滤膜具有很大的吸引力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号