首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxic–ischemic encephalopathy (HIE) is a devastating neonatal brain condition caused by lack of oxygen and limited blood flow. Environmental enrichment (EE) is a classic paradigm with a complex stimulation of physical, cognitive, and social components. EE can exert neuroplasticity and neuroprotective effects in immature brains. However, the exact mechanism of EE on the chronic condition of HIE remains unclear. HIE was induced by a permanent ligation of the right carotid artery, followed by an 8% O2 hypoxic condition for 1 h. At 6 weeks of age, HIE mice were randomly assigned to either standard cages or EE cages. In the behavioral assessments, EE mice showed significantly improved motor performances in rotarod tests, ladder walking tests, and hanging wire tests, compared with HIE control mice. EE mice also significantly enhanced cognitive performances in Y-maze tests. Particularly, EE mice showed a significant increase in Cav 2.1 (P/Q type) and presynaptic proteins by molecular assessments, and a significant increase of Cav 2.1 in histological assessments of the cerebral cortex and hippocampus. These results indicate that EE can upregulate the expression of the Cav 2.1 channel and presynaptic proteins related to the synaptic vesicle cycle and neurotransmitter release, which may be responsible for motor and cognitive improvements in HIE.  相似文献   

2.
目的研究新生儿缺氧缺血性脑病(HIE)与血清及脑脊液葡萄糖水平的变化,为HIE临床分度与治疗提供参考依据。方法对HIE患儿于急性期及恢复期各测定1次血清及脑脊液葡萄糖的含量,并以正常新生儿作为对照组。结果轻、中、重度HIE组患儿急性期血清及脑脊液葡萄糖水平分别为:(1)血清葡萄糖:(4.50±0.20);(3.80±0.21);(3.20±0.22),低于对照组:(4.80±0.25)(P值分别<0.05、0.01、0.01);(2)脑脊液葡萄糖:(4.30±0.20);(4.00±0.21);(3.50±0.20),低于对照组(4.50±0.25)(P值分别<0.05、0.01、0.01)。且临床分度愈重,血清及脑脊液葡萄糖水平降低愈明显,HIE各组间差异显著(P<0.05)。HIE各组患儿恢复期血清及脑脊液葡萄糖水平上升。结论测定HIE患儿血清及脑脊液葡萄糖含量,有助于对HIE的分度,及指导临床治疗。  相似文献   

3.
Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future.  相似文献   

4.
5.
Exercise training is a neuroprotective strategy in cerebral ischemic injury, but the underlying mechanisms are not yet clear. In the present study, we investigated the effects of treadmill exercise pretreatment on the expression of mitochondrial dynamic proteins. We examined the expression of OPA1/DLP1/MFF/Mfn1/Mfn2, which regulatesmitochondrial fusion and fission, and cytochrome C oxidase subunits (COX subunits), which regulatemitochondrial functions, after middle cerebral artery occlusion (MCAO) in rats. T2-weighted magnetic resonance imaging (MRI) was evaluated as indices of brain edema after ischemia as well. Treadmill training pretreatment increased the expression levels of OPA1 and COXII/III/IV and alleviated brain edema, indicating that exercise pretreatment provided neuroprotection in cerebral ischemic injury via the regulation of mitochondrial dynamics and functions.  相似文献   

6.
Background: Hypoxic–ischemic encephalopathy (HIE) around the time of birth results from loss of oxygen (hypoxia) and blood supply (ischemia). Exogenous infusion of multi-potential cells, including human amnion epithelial cells (hAECs), can reduce hypoxic–ischemic (HI) brain injury. However, there are few data on treatment of severe HI in large animal paradigms at term. The aim of the current study was to determine whether infusion of hAECs early after injury may reduce brain damage after ischemia in near-term fetal sheep. Methods: Chronically instrumented fetal sheep (0.85 gestation) received 30 min of global cerebral ischemia followed by intravenous infusion of hAECs from 2 h after the end of ischemia (ischemia-hAEC, n = 6) or saline (ischemia-vehicle, n = 7). Sham control animals received sham ischemia with vehicle infusion (sham control, n = 8). Results: Ischemia was associated with significant suppression of EEG power and spectral edge frequency until the end of the experiment and a secondary rise in cortical impedance from 24 to 72 h, which were not attenuated by hAEC administration. Ischemia was associated with loss of neurons in the cortex, thalamus, striatum and hippocampus, loss of white matter oligodendrocytes and increased microglial numbers in the white matter, which were not affected by hAEC infusion. Conclusions: A single intravenous administration of hAECs did not reduce electrographic or histological brain damage after 30 min of global cerebral ischemia in near-term fetal sheep.  相似文献   

7.
Our previous clinical studies demonstrated the synergistic therapeutic effect induced by co-administering recombinant human erythropoietin (rhEPO) in human umbilical cord blood (hUCB) therapy for children with cerebral palsy. However, the cellular mechanism beyond the beneficial effects in this combination therapy still needs to be elucidated. A hypoxic–ischemic encephalopathy (HIE) model of neonates, representing cerebral palsy, was prepared and randomly divided into five groups (hUCB+rhEPO combination, hUCB, and rhEPO treatments over HIE, HIE control, and sham). Seven days after, hUCB was administered intraperitoneally and the rhEPO injections were started. Neurobehavioral tests showed the best outcome in the combination therapy group, while the hUCB and rhEPO alone treatments also showed better outcomes compared with the control (p < 0.05). Inflammatory cytokines were downregulated by the treatments and attenuated most by the combination therapy (p < 0.05). The hUCB+rhEPO treatment also showed remarkable increase in phosphorylation of Akt and potentiation of anti-apoptotic responses with decreased Bax and increased Bcl-2 (p < 0.05). Pre-treatment of MK-2206, an Akt inhibitor, for the combination therapy depressed the anti-apoptotic effects. In conclusion, these findings suggest that the therapeutic effect of hUCB therapy might be potentiated by co-administration of rhEPO via augmentation of anti-inflammatory and anti-apoptotic responses related to the phosphorylation of Akt.  相似文献   

8.
Physical exercise has been demonstrated to be neuroprotective in both clinical and laboratory settings. However, the exact mechanism underlying this effect is unclear. Our study aimed to investigate whether pre-ischemic treadmill training could serve as a form of ischemic preconditioning in a rat model undergoing middle cerebral artery occlusion (MCAO). Thirty-six rats were divided into three groups: a sham control group, a non-exercise with operation group and an exercise with operation group. After treadmill training, ischemia was induced by occluding the MCA for 2 h, followed by reperfusion. Half of the rats in each group were sacrificed for mRNA detection of mGluR5 and NR2B 80 min after occlusion. The remaining animals were evaluated for neurological deficits by behavioral scoring and then decapitated to assess the infarct volume. The mRNA expression of mGluR5 and NR2B was detected by real-time PCR. The results suggest that pre-ischemic treadmill training may induce brain ischemic tolerance by reducing the mRNA levels of mGluR5 and NR2B, and thus, the results indicate that physical exercise might be an effective method to establish ischemic preconditioning.  相似文献   

9.
Advanced maternal age (AMA) denotes an age of ≥35 years during the time of delivery. Maternal metabolism affects the offspring’s physical and neurological development as well as their cognitive function. This study aimed to elucidate the effects of exercise training among old female animals on the cognitive function, hippocampal neuroplasticity, mitochondrial function, and apoptosis in the offspring. We found that the offspring of mothers with AMA without exercise training had decreased spatial learning and memory, brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD-95) protein levels, neurogenesis, and mitochondrial function, as well as hippocampal cell death. Contrastingly, offspring of mothers with AMA with exercise training showed improved spatial learning, memory, hippocampal neuroplasticity, and mitochondrial function. These findings indicate that despite the AMA, increasing fitness through exercise significantly contributes to a positive prenatal environment for fetuses. The maternal exercises augmented the hippocampal levels of BDNF, which prevents decreased cognitive function in the offspring of mothers with AMA.  相似文献   

10.
We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of 14C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [3H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [3H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [3H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.  相似文献   

11.
目的探讨不同程度新生儿缺氧缺血性脑病(HIE)患儿血清乳酸脱氢酶(LDH)、肌酸激酶(CK)及其脑同工酶活性的变化。方法 100例HIE患儿和50例正常儿均于生后24h进行血清LDH及同工酶LDH3,CK及同工酶CKBB活性检测。结果 HIE中度和重度组血清LDH、CK、LDH3和CK-BB活性明显高于正常组(P<0.05)。结论血清LDH、CK,尤其LDH3、CKBB活性,可以作为评价新生儿HIE患儿脑损伤程度的指标。  相似文献   

12.
AIM: Mild heat stress can improve mitochondrial respiratory capacity in skeletal muscle. However, long-term heat interventions are scarce, and the effects of heat therapy need to be understood in the context of the adaptations which follow the more complex combination of stimuli from exercise training. The purpose of this work was to compare the effects of 6 weeks of localized heat therapy on human skeletal muscle mitochondria to single-leg interval training. METHODS: Thirty-five subjects were assigned to receive sham therapy, short-wave diathermy heat therapy, or single-leg interval exercise training, localized to the quadriceps muscles of the right leg. All interventions took place 3 times per week. Muscle biopsies were performed at baseline, and after 3 and 6 weeks of intervention. Mitochondrial respiratory capacity was assessed on permeabilized muscle fibers via high-resolution respirometry. RESULTS: The primary finding of this work was that heat therapy and exercise training significantly improved mitochondrial respiratory capacity by 24.8 ± 6.2% and 27.9 ± 8.7%, respectively (p < 0.05). Fatty acid oxidation and citrate synthase activity were also increased following exercise training by 29.5 ± 6.8% and 19.0 ± 7.4%, respectively (p < 0.05). However, contrary to our hypothesis, heat therapy did not increase fatty acid oxidation or citrate synthase activity. CONCLUSION: Six weeks of muscle-localized heat therapy significantly improves mitochondrial respiratory capacity, comparable to exercise training. However, unlike exercise, heat does not improve fatty acid oxidation capacity.  相似文献   

13.
Numerous studies have demonstrated that genes, RNAs, and proteins are involved in the occurrence and development of stroke. In addition, previous studies concluded that microRNAs (miRNAs or miRs) are closely related to the pathological process of ischemic and hypoxic disease. Therefore, the aims of this study were to quantify the altered expression levels of miRNAs in the infarct region 6 h after middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia in mice using a large-scale miRNAs microarray. Firstly, MCAO-induced cerebral ischemic injuries were investigated by observing the changes of neurological deficits, infarct volume and edema ratio. One hundred and eighteen differentially expressed miRNAs were identified in the infarct region of mice following the MCAOs compared with sham group (p < 0.05 was considered as significant). Among these 118 significantly expressed microRNAs, we found that 12 miRNAs were up-regulated with fold changes lager than two, and 18 miRNAs were down-regulated with fold changes less than 0.5 in the infarct region of mice following the 6 h MCAOs, compared with the sham group. Then, these 30 miRNAs with expression in fold change larger than two or less than 0.5 was predicted, and the functions of the target genes of 30 miRNAs were analyzed using a bioinformatics method. Finally, the miRNA-gene network was established and the functional miRNA-mRNA pairs were identified, which provided insight into the roles of the specific miRNAs that regulated specified genes in the ischemic injuries. The miRNAs identified in this study may represent effective therapeutic targets for stroke, and further study of the role of these targets may increase our understanding of the mechanisms underlying ischemic injuries.  相似文献   

14.
15.
Perinatal hypoxia-ischemia (HI) is a major cause of brain injury and mortality in neonates. Hypoxic-ischemic encephalopathy (HIE) predisposes infants to long-term cognitive deficits that influence their quality of life and place a large burden on society. The only approved treatment to protect the brain after HI is therapeutic hypothermia, which has limited effectiveness, a narrow therapeutic time window, and is not considered safe for treatment of premature infants. Alternative or adjunctive therapies are needed to improve outcomes of full-term and premature infants after exposure to HI. Inter-alpha inhibitor proteins (IAIPs) are immunomodulatory molecules that are proposed to limit the progression of neonatal inflammatory conditions, such as sepsis. Inflammation exacerbates neonatal HIE and suggests that IAIPs could attenuate HI-related brain injury and improve cognitive outcomes associated with HIE. Recent studies have shown that intraperitoneal treatment with IAIPs can decrease neuronal and non-neuronal cell death, attenuate glial responses and leukocyte invasion, and provide long-term behavioral benefits in neonatal rat models of HI-related brain injury. The present review summarizes these findings and outlines the remaining experimental analyses necessary to determine the clinical applicability of this promising neuroprotective treatment for neonatal HI-related brain injury.  相似文献   

16.
17.
It is well established that the brain can be prepared to resist or tolerate ischemic stroke injury, and mitochondrion is a major target for this tolerance. The preparation of ischemic stroke tolerance can be achieved by three major approaches: ischemic conditioning, hypoxic conditioning and chemical conditioning. In each conditioning approach, there are often two strategies that can be used to achieve the conditioning effects, namely preconditioning (Pre-C) and postconditioning (Post-C). In this review, we focus on chemical conditioning of mitochondrial proteins as targets for neuroprotection against ischemic stroke injury. Mitochondrial targets covered include complexes I, II, IV, the ATP-sensitive potassium channel (mitoKATP), adenine dinucleotide translocase (ANT) and the mitochondrial permeability transition pore (mPTP). While numerous mitochondrial proteins have not been evaluated in the context of chemical conditioning and ischemic stroke tolerance, the paradigms and approaches reviewed in this article should provide general guidelines on testing those mitochondrial components that have not been investigated. A deep understanding of mitochondria as the target of chemical conditioning for ischemic stroke tolerance should provide valuable insights into strategies for fighting ischemic stroke, a leading cause of death in the world.  相似文献   

18.
This study aimed to clarify the therapeutic effects of exercise training on neural BDNF/TrkB signaling and apoptotic pathways in diabetic cerebral cortex. Thirty-six male C57BL/6JNarl mice were randomly divided into three groups: control (CON-G), diabetic group (DM-G, 100 mg/kg streptozotocin, i.p.), and diabetic with exercise training group (DMEX-G, Swim training for 30 min/day, 5 days/week). After 12 weeks, H&E staining, TUNEL staining, and Western blotting were performed to detect the morphological changes, neural apoptosis, and protein levels in the cerebral cortex. The Bcl2, BclxL, and pBad were significant decreased in DM-G compared with CON-G, whereas they (excluded the Ras and pRaf1) were increased in DMEX-G. In addition, interstitial space and TUNEL(+) apoptotic cells found increased in DM-G with increases in Fas/FasL-mediated (FasL, Fas, FADD, cleaved-caspase-8, and cleaved-caspase-3) and mitochondria-initiated (tBid, Bax/Bcl2, Bak/BclxL, Bad, Apaf1, cytochrome c, and cleaved-caspase-9) apoptotic pathways. However, diabetes-induced neural apoptosis was less in DMEX-G than DM-G with observed raises in the BDNF/TrkB signaling pathway as well as decreases in Fas/FasL-mediated and mitochondria-initiated pathways. In conclusion, exercise training provided neuroprotective effects via enhanced neural BDNF/TrkB signaling pathway and prevent Fas/FasL-mediated and mitochondria-initiated apoptotic pathways in diabetic cerebral cortex.  相似文献   

19.
Although physical exercise is an effective strategy for treatment of ischemic stroke, the underlying protective mechanisms are still not well understood. It has been recently demonstrated that neural progenitor cells play a vital role in the recovery of neurological function (NF) through differentiation into mature neurons. In the current study, we observed that physical exercise significantly reduced the infarct size and improved damaged neural functional recovery after an ischemic stroke. Furthermore, we found that the treatment not only exhibited a significant increase in the number of neural progenitor cells and neurons but also decreased the apoptotic cells in the peri-infarct region, compared to a control in the absence of exercise. Importantly, the insulin-like growth factor-1 (IGF-1)/Akt signaling pathway was dramatically activated in the peri-infarct region of rats after physical exercise training. Therefore, our findings suggest that physical exercise directly influences the NF recovery process by increasing neural progenitor cell count via activation of the IGF-1/Akt signaling pathway.  相似文献   

20.
Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of mortality and morbidity in the perinatal period. This condition results from a period of ischemia and hypoxia to the brain of neonates, leading to several disorders that profoundly affect the daily life of patients and their families. Currently, therapeutic hypothermia (TH) is the standard of care in developing countries; however, TH is not always effective, especially in severe cases of HIE. Addressing this concern, several preclinical studies assessed the potential of stem cell therapy (SCT) for HIE. With this systematic review, we gathered information included in 58 preclinical studies from the last decade, focusing on the ones using stem cells isolated from the umbilical cord blood, umbilical cord tissue, placenta, and bone marrow. Outstandingly, about 80% of these studies reported a significant improvement of cognitive and/or sensorimotor function, as well as decreased brain damage. These results show the potential of SCT for HIE and the possibility of this therapy, in combination with TH, becoming the next therapeutic approach for HIE. Nonetheless, few preclinical studies assessed the combination of TH and SCT for HIE, and the existent studies show some contradictory results, revealing the need to further explore this line of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号