首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of p75 neurotrophin receptor and survival of medium-sized spiny projection neurons and cholinergic interneurons in the rat striatum were studied using immunocytochemistry at different times after transient, unilateral middle cerebral artery occlusion. Thirty minutes of middle cerebral artery occlusion caused a major loss of projection neurons, identified by their immunoreactivity to dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein with a molecular weight of 32,000, in the lateral part of the striatum, as observed at 48 h following the insult with no further change at one week. In contrast, no reduction of the number of choline acetyltransferase-positive, cholinergic interneurons, which also expressed TrkA, was detected at either time-point. At 48 h following middle cerebral artery occlusion, expression of p75 neurotrophin receptor was observed in striatal cells which, by the use of double-label immunostaining, were identified as the cholinergic interneurons. No p75 neurotrophin receptor immunoreactivity remained in cholinergic cells after one week of reperfusion. Based on current hypotheses regarding the function of the p75 neurotrophin receptor, the transient expression of this receptor in striatal cholinergic interneurons might contribute to their high resistance to ischemic neuronal death. However, the expression of p75 neurotrophin receptor could also be a first step in a pathway leading to apoptosis, which is inhibited after the present insult due to concomitant activation of TrkA.  相似文献   

2.
During vertebrate development, neuronal survival depends on target-derived neurotrophic factors. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, can prevent the death of particular peripheral sensory neurons in vitro, and of central motor neurons as well as dopaminergic and cholinergic neurons of the basal forebrain during development. It also prevents the death of motor neurons and midbrain dopaminergic neurons induced by lesions. Here we show that mutant mice lacking BDNF have severe deficiencies in coordination and balance, associated with excessive degeneration in several sensory ganglia including the vestibular ganglion. The few remaining vestibular axons fail to contact the vestibular sensory epithelia, and terminate in the adjacent connective tissue. Survival of sympathetic, midbrain dopaminergic and motor neurons is not affected. These results indicate that BDNF is required for the survival and target innervation of particular neuronal populations.  相似文献   

3.
The reticular thalamic nucleus (RT) receives cholinergic fibers from both the basal forebrain and the brainstem. Recent studies have shown that the p75 neurotrophin receptor (p75NTR) is synthesized in cholinergic neurons in the basal forebrain but not in those in the brainstem. In this study, to identify cholinergic fibers originating from the basal forebrain, we used a monoclonal antibody against p75NTR (192-IgG) and characterized the ultrastructure of the immunoreactive fiber terminals in the rostral part of the RT in 3-week-old rats. Light microscopy revealed that p75NTR-immunoreactive fine fibers and varicosities were distributed throughout the nucleus. From electron micrographs, three types of labeled terminals were identified. The first type of labeled fiber terminals (63 out of 106) was consistently small, contained densely packed vesicles, and established asymmetrical synaptic contacts with heavy and bushy postsynaptic thickening on distal dendritic profiles; the second type (18 out of 106) established asymmetrical synaptic contacts with very slight postsynaptic thickening; and the third type (25 out of 106) of labeled terminals contained pleomorphic vesicles and established symmetrical synaptic contacts with more proximal dendritic surfaces than the first two types. In addition to the above, labeled dendritic profiles receiving non-labeled asymmetrical and symmetrical synaptic contacts were identified. These findings suggest that the basal forebrain cholinergic system establishes a variety of synaptic connections in the RT and influences cortical activity indirectly via thalamocortical pathways, as well as via direct projections to the cortex.  相似文献   

4.
These studies tested the hypothesis that survival-promoting effects of neurotrophins on basal forebrain cholinergic neurons are enhanced under stress. Septal neurons from embryonic day 14-15 rats exposed for 10-14 d to neurotrophin [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or neurotrophin-4 (NT-4), each at 100 ng/ml] showed a two- to threefold increase in choline acetyltransferase (ChAT) activity, with little evidence of synergistic interactions. Neurotrophins produced no significant increase in the survival of total or acetylcholinesterase (AChE)-positive neurons at moderate plating density (1200-1600 cells/mm2). However, with very low plating densities (2-28 cells/mm2) BDNF, NT-3, and NT-4 (but not NGF) increased total neuronal survival, and BDNF increased survival of AChE-positive neurons. NGF and BDNF enhanced ChAT activity and survival of cholinergic neurons after a 24 hr hypoglycemic stress, even when added 1 hr after stress onset. All four tested neurotrophins increased total neuronal survival after hypoglycemic stress. These results suggest that neurotrophins are important for preservation of central cholinergic function under stress conditions, with different neurotrophins protecting against different stresses. The stress-associated survival-promoting effects of neurotrophins were not limited to the cholinergic subpopulation.  相似文献   

5.
6.
Cholinergic neurons were studied by immunohistochemistry, with an antiserum against choline acetyltransferase (ChAT), in the basal forebrain (Ch1 to Ch4) of four patients with Alzheimer's disease (AD) and four control subjects. ChAT-positive cell bodies were mapped and counted in Ch1 (medial septal nucleus), Ch2 (vertical nucleus of the diagonal band), Ch3 (horizontal nucleus of the diagonal band) and Ch4 (nucleus basalis of Meynert). Compared to controls, the number of cholinergic neurons in AD patients was reduced by 50% on average. The interindividual variations in cholinergic cell loss were high, neuronal loss ranging from moderate (27%) to severe (63%). Despite the small number of brains studied, a significant correlation was found between the cholinergic cell loss and the degree of intellectual impairment. To determine the selectivity of cholinergic neuronal loss in the basal forebrain of AD patients, NPY-immunoreactive neurons were also investigated. The number of NPY-positive cell bodies was the same in controls and AD patients. The results (1) confirm cholinergic neuron degeneration in the basal forebrain in AD and the relative sparing of these neurons in some patients, (2) indicate that degeneration of cholinergic neurons in the basal forebrain contributes to intellectual decline, and (3) show that, in AD, such cholinergic cell loss is selective, since NPY-positive neurons are preserved in the basal forebrain.  相似文献   

7.
Over the past decade, neurotrophic factors have generated much excitement for their potential as therapy for neurological disorders. In this regard, nerve growth factor (NGF), the founding member of the neurotrophin family, has generated great interest as a potential target for the treatment of Alzheimer's disease (AD). This interest is based on the observation that cholinergic basal forebrain (CBF) neurons which provide the major source of cholinergic innervation to the cerebral cortex and hippocampus undergo selective and severe degeneration in advanced AD and that these neurons are dependent upon NGF and its receptors for their survival. In fact, NGF transduces its effects by binding two classes of cell surface receptors, TrkA and p75(NTR), both of which are produced by CBF neurons. This review focuses on NGF/receptor binding, signal transduction, regulation of specific cellular endpoints, and the potential use of NGF in AD. Alterations in NGF ligand and receptor expression at different stages of AD are summarized. Recent results suggest that cognitive deficits in early AD and mild cognitive impairment (MCI) are not associated with a cholinergic deficit. Thus, the earliest cognitive deficits in AD may involve brain changes other than simply cholinergic system dysfunction. Recent findings indicate an early defect in NGF receptor expression in CBF neurons; therefore treatments aimed at facilitating NGF actions may prove highly beneficial in counteracting the cholinergic dysfunction found in end-stage AD and attenuating the rate of degeneration of these cholinergic neurons.  相似文献   

8.
We have previously shown that an immunotoxin (IT) directed against the p75 component of the nerve growth factor receptor (NGFr) selectively abolished cholinergic neurons in the basal forebrain of the rat following intraventricular administration. We now report the neuropathological responses in the rat brain to the IT, with particular emphasis on the cholinergic basal forebrain (CBF) and other known p75NGFr-positive brain regions. Animals received intraventricular injections of IT and were allowed to survive for various times. Sections through the entire brain were evaluated using (1) hematoxylin and eosin; (2) glial fibrillary acidic protein immunohistochemistry; and (3) Griffonia simplicifolia lectin histochemistry. The only clearly degenerating cells following IT treatment were located in the CBF or in the Purkinje cell layer of the cerebellum. A marked microglial response was demonstrated that was tightly linked both topographically and temporally to the loss of neurons in these areas. The astroglial response was mild in the same regions in which the microglial response was obvious. The other areas of rat brain including the terminal fields of CBF projections showed no consistent reactive cellular responses in IT-treated animals. This study extends and corroborates previous work indicating specificity of IT, demonstrates active neuronal degeneration by conventional pathological methods for the first time, and illustrates the unexpected and novel finding that the predominant pathological response to the IT-induced loss of neurons is microglial. Both the high degree of specificity and the distinctive glial response distinguish the IT model from other experimental models of CBF neurodegeneration.  相似文献   

9.
The association of the epsilon4 allele of apoE with increased risk for Alzheimer's disease (AD) and with poor clinical outcome after certain acute brain injuries has sparked interest in the neurobiology of apoE. ApoE (-/-) mice provide a tool to investigate the role of apoE in the nervous system in vivo. Since integrity of the basal forebrain cholinergic system is severely compromised in AD, with severity of dysfunction correlating with apoE4 gene dosage, the present study tested the hypothesis that apoE is required to maintain the normal integrity of basal forebrain cholinergic neurons (BFCNs). Histological and biochemical analyses of the septo-hippocampal cholinergic system were performed in apoE (-/-) mice during aging and following injury. Using unbiased quantitative methods, there was little or no evidence for defects in the septo-hippocampal cholinergic system, as assessed by p75(NTR)-immunoreactive neuron number and size in the medial septum, cholinergic fiber density in the hippocampus, and choline acetyltransferase activity in the hippocampus, cortex, and striatum in aged apoE (-/-) mice (up to 24 months of age) as compared to age-matched wild-type mice of the same strain. In addition, cholinergic neuronal survival and size following fimbria-fornix transection in apoE (-/-) mice did not differ from controls. However, following entorhinal cortex lesion, there was persistence of degeneration products in the deafferented hippocampus in apoE (-/-) mice. These data suggest that although apoE is not required for the maintenance of BFCNs in vivo, it may play a role in the clearance of cholesterol-laden neurodegeneration products following brain injury.  相似文献   

10.
Nerve growth factor (NGF) binds to two cell surface receptors, p140trk and p75NGFR, which are both expressed in responsive sensory, sympathetic, and basal forebrain cholinergic neurons. While p140trk belongs to the family of receptor tyrosine kinases, p75NGFR is a member of the TNF/Fas/CD40/CD30 family of receptors. Current views of neurotrophin receptor function have tended to interpret p140trk as the high affinity NGF-binding site. To assess if the binding of NGF to p140trk was distinguishable from binding to high affinity sites on neuronal cells, PC12 cell sublines were generated which expressed p140trk alone, or coexpressed both p140trk and p75NGFR. Kinetic analysis of 125I-NGF binding indicates that it has an unusually slow rate of association with p140trk (k + 1 = 8 x 10(5) M-1 s-1). When both p140trk and p75NGFR receptors are coexpressed, the rate of association of NGF is increased 25-fold to produce a higher affinity binding site. An increase in the rate of internalization was also observed. Since high affinity binding and internalization are believed to be prerequisite for the biological activities of NGF, these results suggest that the biological effects by NGF are derived from a novel kinetic binding site that requires the expression of both receptors. The implications of these results with respect to multisubunit polypeptide receptors are discussed.  相似文献   

11.
Nerve growth factor interacts with the trkA tyrosine kinase receptor and with the p75 neurotrophin receptor. It is clear that trkA mediates most, if not all, of the stereotypical responses of sympathetic neurons to nerve growth factor but the role of the p75 neurotrophin receptor is unclear. In this study, we have asked whether a functional interaction between p75 neurotrophin receptor and trkA exists in primary sympathetic neurons by disrupting nerve growth factor binding to p75 neurotrophin receptor. Acute assays reveal that blocking antibodies directed against p75 neurotrophin receptor reduce nerve growth factor-mediated trkA tyrosine phosphorylation and reduce the amount of nerve growth factor which binds the trkA receptor. This reduction in trkA activity is relatively short-lived in vitro and blocking antibodies to p75 neurotrophin receptor do not inhibit long-term survival of nerve growth factor-dependent primary neurons. Together, these data indicate that p75 neurotrophin receptor and trkA interact within primary neurons to enhance nerve growth factor binding to the trkA receptor under conditions of acute but not chronic nerve growth factor exposure.  相似文献   

12.
The distribution of immunoreactivity for the neurotrophin receptor tyrosine kinase TrkC was examined in the brain of the adult rhesus monkey. TrkC-like immunoreactivity was widespread and consisted primarily of varicose fibers. The most dense populations of fibers were in the basal forebrain (in the cholinergic cell groups Ch1, Ch2 and Ch4), in the raphé complex throughout its rostrocaudal extent, and in the locus coeruleus. Other fibers were present in the thalamus, hypothalamus, central gray matter of the midbrain, dorsal midline of the brainstem and the cerebral cortex. The only neuronal cell bodies with consistent labeling were located in the lateral hypothalamus. Purkinje cells in the cerebellum showed variable labeling. Specific labeling of varicosities and cell bodies was abolished by omission of the primary antiserum or by preabsorption with the TrkC peptide antigen. We conclude that TrkC-like immunoreactivity can be detected in a wide variety of subcortical locations in the adult rhesus monkey. Labeling was particularly prominent in the vicinity of the major cholinergic, serotonergic and adrenergic nuclei, known from other studies to be vulnerable in the ageing brain. This suggests that the ligand for TrkC, neurotrophin-3, may persist as a survival factor for critical neurons into adulthood.  相似文献   

13.
Systemic administration of pilocarpine, which results in status epilepticus followed by recurrent seizures in rats, is a widely used experimental model of chronic limbic epilepsy. Marked structural alterations have been documented in pilocarpine-induced epilepsy, and these include cell loss in the hippocampus and other brain areas, and sprouting of mossy and cholinergic fibers in the hippocampus. Evidence is accumulating that neurotrophins and neurotrophin receptors are involved in the cascade of these events. Two and 4 months after pilocarpine-induced epilepsy, neurons containing the 75-kDa low affinity neurotrophin receptor (p75NTR) were investigated with immunohistochemistry in the medial septal and diagonal band nuclei. No significant differences in the distribution and number of immunoreactive neurons were found in the epileptic rats compared to control saline-treated animals. However, in the epileptic animals, a significant decrease in the perikaryal size of p75NTR-immunoreactive neurons of the septal/diagonal band region was found by 60 days, and such atrophic changes were more marked in the diagonal band nuclei by 120 days. These findings indicate that the p75NTR-containing cell bodies, which include the neurons projecting to the hippocampal formation and are cholinergic in the normal brain, survive after months of spontaneous recurrent seizures, during which, therefore, a supply of p75NTR to target regions is maintained in the chronic epileptic brain. However, the present data point out that these p75NTR-containing neurons undergo a significant shrinkage in pilocarpine-induced chronic epilepsy, thus indicating that they are involved in the brain pathology of temporal lobe epilepsy.  相似文献   

14.
Cholinergic basal forebrain neurons are the major source of cortical cholinergic innervation. The number of these neurons is regulated by the availability of nerve growth factor (NGF) during development while in adulthood their cholinergic activity is modulated by NGF. In previous studies we have shown that cholinergic immunolesions of basal forebrain neurons increase local immediate early gene expression and NGF synthesis in the regions of degeneration. In this study we identify the cellular source of c-Jun and NGF expression using dual immunolabeling of c-Jun and NGF in combination with neuronal and glial markers. We demonstrate that both c-Jun and NGF are exclusively expressed in reactive astrocytes but not in microglia or in GABAergic basal forebrain neurons. These observations support the hypothesis that reactive astrocytes synthesize neurotrophic substances in vivo in response to neuronal degeneration in the basal forebrain.  相似文献   

15.
Alzheimer's disease, the most common cause of senile dementia, is characterized by intracellular formation of neurofibrillary tangles, extracellular deposits of beta amyloid as well as cerebrovascular amyloid accumulation and a profound loss of cholinergic neurons within the nucleus basalis Meynert with alterations in cortical neurotransmitter receptor densities. The use of the cholinergic immunotoxin 192IgG-saporin allows for the first time study of the impact of cortical cholinergic deafferentation on cortical neurotransmission, learning, and memory without direct effects on other neuronal systems. This model also allows the elucidation of contributions of cholinergic mechanisms to the establishment of other pathological features of Alzheimer's disease. The findings discussed here demonstrate that cholinergic immunolesions by 192IgG-saporin induce highly specific, permanent cortical cholinergic hypoactivity and alterations in cortical neurotransmitter densities comparable to those described for Alzheimer's disease. The induced cortical cholinergic deficit also leads to cortical/hippocampal neurotrophin accumulation and reduced amyloid precursor protein (APP) secretion, possibly reflecting the lack of stimulation of postsynaptic M1/M3 muscarinic receptors coupled to protein kinase C. This immunolesion model should prove useful to test therapeutic strategies based on stimulation of cortical cholinergic neurotransmission or amelioration of pathogenic aspects of cholinergic degeneration in the basal forebrain. Application of the model to animal species that can develop beta-amyloid plaques could provide information about the contribution of cholinergic function to amyloidogenic APP processing.  相似文献   

16.
Evidence for the importance of the basal forebrain cholinergic system in the maintenance of cognitive function has stimulated efforts to identify trophic mechanisms that protect this cell population from atrophy and dysfunction associated with aging and disease. Acidic fibroblast growth factor (aFGF) has been reported to support cholinergic neuronal survival and has been localized in basal forebrain with the use of immunohistochemical techniques. Although these data indicate that aFGF is present in regions containing cholinergic cell bodies, the actual site of synthesis of this factor has yet to be determined. In the present study, in situ hybridization techniques were used to evaluate the distribution and possible colocalization of mRNAs for aFGF and the cholinergic neuron marker choline acetyltransferase (ChAT) in basal forebrain and striatum. In single-labeling preparations, aFGF mRNA-containing neurons were found to be codistributed with ChAT mRNA+ cells throughout all fields of basal forebrain, including the medial septum/diagonal band complex and striatum. By using a double-labeling (colormetric and isotopic) technique, high levels of colocalization (over 85%) of aFGF and ChAT mRNAs were observed in the medial septum, the diagonal bands of Broca, the magnocellular preoptic area, and the nucleus basalis of Meynert. The degree of colocalization was lower in the striatum, with 64% of the cholinergic cells in the caudate and 33% in the ventral striatum and olfactory tubercle labeled by the aFGF cRNA. These data demonstrate substantial regionally specific patterns of colocalization and support the hypothesis that, via an autocrine mechanism, aFGF provides local trophic support for cholinergic neurons in the basal forebrain and the striatum.  相似文献   

17.
Naturally occurring sympathetic neuron death is the result of two apoptotic signaling events: one normally suppressed by NGF/TrkA survival signals, and a second activated by the p75 neurotrophin receptor. Here we demonstrate that the p53 tumor suppressor protein, likely as induced by the MEKK-JNK pathway, is an essential component of both of these apoptotic signaling cascades. In cultured neonatal sympathetic neurons, p53 protein levels are elevated in response to both NGF withdrawal and p75NTR activation. NGF withdrawal also results in elevation of a known p53 target, the apoptotic protein Bax. Functional ablation of p53 using the adenovirus E1B55K protein inhibits neuronal apoptosis as induced by either NGF withdrawal or p75 activation. Direct stimulation of the MEKK-JNK pathway using activated MEKK1 has similar effects; p53 and Bax are increased and the subsequent neuronal apoptosis can be rescued by E1B55K. Expression of p53 in sympathetic neurons indicates that p53 functions downstream of JNK and upstream of Bax. Finally, when p53 levels are reduced or absent in p53+/- or p53-/- mice, naturally occurring sympathetic neuron death is inhibited. Thus, p53 is an essential common component of two receptor-mediated signal transduction cascades that converge on the MEKK-JNK pathway to regulate the developmental death of sympathetic neurons.  相似文献   

18.
Cholinergic basal forebrain neurons appear to play a key role in cognition and attention. In rat, basal forebrain neurons express multiple proteins including the high-affinity signal transducing tyrosine kinase A receptor for nerve growth factor, the neuropeptide galanin and nitric oxide synthase, a marker for the novel neurotransmitter nitric oxide. The present study was undertaken to define the relationship between neurons expressing each of these markers within the medial septum-vertical limb of the diagonal band, horizontal limb of the diagonal band and nucleus basalis in colchicine pre-treated rats. Tyrosine kinase A-immunopositive neurons were seen throughout all subfields of the basal forebrain. In contrast, nitric oxide synthase- and galanin-immunoreactive neurons were mainly distributed within the septal-diagonal band complex. Co-localization experiments revealed that virtually all nitric oxide synthase-positive neurons (visualized by nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry) also contained tyrosine kinase A, whereas many fewer tyrosine kinase A neurons were nicotinamide adenine dinucleotide phosphate-diaphorase positive within the medial septum-vertical limb of the diagonal band. Within the horizontal limb of the diagonal band, numerous nicotinamide adenine dinucleotide phosphate-diaphorase neurons expressed tyrosine kinase A, whereas only a small number of tyrosine kinase A neurons contained nicotinamide adenine dinucleotide phosphate-diaphorase. Within the nucleus basalis very few neurons were nicotinamide adenine dinucleotide phosphate-diaphorase reactive, and a minor number contained tyrosine kinase A. Additional co-localization experiments revealed minor percentages of neurons containing nicotinamide adenine dinucleotide phosphate-diaphorase and galanin immunoreactivity within the various subfields of the basal forebrain. Within the horizontal limb of the diagonal band minor numbers of nicotinamide adenine dinucleotide phosphate-diaphorase-reactive perikarya displayed galanin. Similarly, only a few galanin-containing neurons expressed nicotinamide adenine dinucleotide phosphate-diaphorase. The existence of tyrosine kinase A, nitric oxide synthase and galanin within select neuronal subgroups of the cholinergic basal forebrain suggests that these perikarya are responsive to a complex set of chemical signals. A greater understanding of the chemical signature of the cholinergic basal forebrain neurons will provide the insight required to develop novel pharmacological approaches aimed at preventing or slowing the degenerative processes that effect these neurons in aging and pathologic disorders.  相似文献   

19.
To clarify the role of the common neurotrophin receptor p75 in modulating the survival response of sensory and sympathetic neurons to NGF at different stages of development, we compared the actions of wild-type NGF with a mutated NGF protein that binds normally to TrkA, the NGF receptor tyrosine kinase, but has greatly reduced binding to p75. At saturating concentrations, the NGF mutant promoted the survival of similar numbers of trigeminal sensory and sympathetic neurons as NGF. At subsaturating concentrations, the NGF mutant was less effective than wild-type NGF in promoting the survival of embryonic sensory neurons and postnatal sympathetic neurons but was equally effective as wild-type NGF in promoting the survival of embryonic sympathetic neurons. Whereas the levels of trkA and p75 were similar in embryonic sensory neurons and postnatal sympathetic neurons, the level of p75 was significantly lower than that of trkA in embryonic sympathetic neurons. These results indicate that binding of NGF to p75 enhances the sensitivity of NGF-dependent neurons to NGF at stages in their development when the levels of p75 and TrkA are similar.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号