首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
The poly(styrene‐b‐butadiene‐b‐styrene) triblock copolymer (SBS) and linear low density polyethylene(LLDPE) were blended and irradiated by γ‐rays to prepare shape memory polymer(SMP). Various amounts of short glass fiber (SGF) were filled into SMP to form a novel shape memory SGF/SBS/LLDPE composite. The effect of SGF on the shape memory SGF/SBS/LLDPE composite was studied in terms of mechanical, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and shape memory effects. It is found that the SGF act as reinforcing fillers and significantly augment the glassy and rubbery stated moduli, tensile strength and shape memory properties. When SGF content is <2.0 wt %, full recovery can be observed after only several minutes at different temperatures and shape recovery speed reduces as the SGF content increases. The shape recovery time decreases as the temperature of the shape memory test increases and the shape recovery rate decreases with increment of cycle times. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40691.  相似文献   

2.
Shape‐memory polymer (SMP) materials have several drawbacks such as low strength, low stiffness and natural insulating tendencies, which seriously limit their development and applications. Much effort has been made to improve their mechanical properties by adding particle or fiber fillers to reinforce the polymer matrix. However, this often leads to the mechanical properties being enhanced slightly, but the shape‐memory effect of reinforced SMP composites being drastically reduced. The experimental results reported here suggested that the mechanical resistive loading and thermal conductivity of a composite (with hybrid filler content of 7.0 wt%) were improved by 160 and 200%, respectively, in comparison with those of pure bulk SMP. Also, the glass transition temperature of the composite was enhanced to 57.28 °C from the 46.38 °C of a composite filled with 5.5 wt% hybrid filler, as determined from differential scanning calorimetry measurements. Finally, the temperature distribution and recovery behavior of specimens were recorded with infrared video in a recovery test, where a 28 V direct current circuit was applied. The effectiveness of carbon black and short carbon fibers being incorporated into a SMP with shape recovery activated by electricity has been demonstrated. These hybrid fillers were explored to improve the mechanical and conductive properties of bulk SMP. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780.  相似文献   

4.
Shape‐memory polymers (SMPs) are an emerging class of active polymers that can be used on a wide range of reconfigurable structures and actuation devices. In this study, an epoxy‐based SMP was synthesized, and its thermomechanical behaviors were comprehensively characterized. The stress–strain behavior of the SMP was determined to be nonlinear, finite deformation in all regions. Strain‐energy‐based models were used to capture the complicated stress–strain behavior and shape‐recovery response of the SMP. Among various strain energy functions, the stretch‐based Ogden model provided the best fit to the experimental observations. Compared to the sophisticated models developed for SMPs, the strain‐energy‐based model was found to be reliable and much easier to use for practical SMP designs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41861.  相似文献   

5.
The purpose of this study was to investigate the shape‐memory behavior of poly(para‐phenylene) (PPP) under varying programming temperatures, relaxation times, and recovery conditions. PPP is an inherently stiff and strong aromatic thermoplastic, not previously investigated for use as a shape‐memory material. Initial characterization of PPP focused on the storage and relaxation moduli for PPP at various frequencies and temperatures, which were used to develop continuous master curves for PPP using time–temperature superposition (TTS). Shape‐memory testing involved programming PPP samples to 50% tensile strain at temperatures ranging from 155°C to 205°C, with varying relaxation holds times before cooling and storage. Shape‐recovery behavior ranged from nearly complete deformation recovery to poor recovery, depending heavily on the thermal and temporal conditions during programming. Straining for extended relaxation times and elevated temperatures significantly decreased the recoverable deformation in PPP during shape‐memory recovery. However, PPP was shown to have nearly identical full recovery profiles when programmed with decreased and equivalent relaxation times, illustrating the application of TTS in programming of the shape‐memory effect in PPP. The decreased shape recovery at extended relaxation times was attributed to time‐dependent visco‐plastic effects in the polymer becoming significant at longer time‐scales associated with the melt/flow regime of the master curve. Under constrained‐recovery, recoverable deformation in PPP was observed to have an exponentially decreasing relationship to the bias stress. This study demonstrated the effective use of PPP as a shape‐memory polymer (SMP) both in mechanical behavior as well as in application. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42903.  相似文献   

6.
Shape memory polymers (SMPs) are an emerging class of active polymers that may be used for a range of reconfigurable structures. In this study, the thermomechanical and shape memory behavior of a thermosetting SMP was investigated using large‐scale compressive tests and small‐scale indentation tests. Results show that the SMP exhibits different deformation modes and mechanical properties in compression than in tension. In glassy state, the SMP displays significant plastic deformation and has a much higher modulus and yield strength in comparison to those obtained in tension. In rubbery state, the SMP behaves like a hyperelastic material and again has a much higher modulus than that obtained in tension. The SMPs were further conditioned separately in simulated service environments relevant to Air Force missions, namely, (1) exposure to UV radiation, (2) immersion in jet‐oil, and (3) immersion in water. The thermomechanical and shape recovery properties of the original and conditioned SMPs were examined under compression. Results show that all the conditioned SMPs exhibit a decrease in Tg as compared to the original SMP. Environmental conditionings generally result in higher moduli and yield strength of the SMPs in the glassy state but lower modulus in the rubbery state. In particular, the UV exposure and water immersion, also weaken the shape recovery abilities of the SMPs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Poor heat conduction in the interface between the carbon fiber and polymer matrix is a problem in the actuation of shape‐memory polymer (SMP) composites by Joule heating. In this study, we investigated the effectiveness of grafting silver‐nanoparticle‐decorated graphene oxide (GO) onto carbon fibers to improve the electrothermal properties and Joule‐heating‐activated shape recovery of SMP composites. Self‐assembled GO was grafted onto carbon fibers to enhance the bonding of the carbon fibers with the polymeric matrix via van der Waal's forces and covalent crosslinking, respectively. Silver nanoparticles were further self‐assembled and deposited to decorate the GO assembly, which was used to decrease the thermal dissimilarity and facilitate heat transfer from the carbon fiber to the polymer matrix. The carbon fiber was incorporated with SMP to achieve the shape recovery induced by Joule heating. We found that the silver‐nanoparticle‐decorated GO helped us achieve a more uniform temperature distribution in the SMP composites compared to those without decoration. Furthermore, the shape‐recovery behavior and temperature profile during the Joule heating of the SMP composites were characterized and compared. A unique synergistic effect of the carbon fibers and silver‐nanoparticle‐decorated GO was achieved to enhance the heat transfer and a higher speed of actuation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41673.  相似文献   

8.
Shape memory polymers (SMPs) attract widespread attention because they are able to maintain a temporary deformation after unloading and recover the initial shape under high temperature conditions. Based on a three‐dimensionally constitutive equation of SMPs, a finite element program is followed by compiling user‐defined material subroutine, which describes the shape memory behavior of thermo‐mechanical experiment. A honeycomb core using SMP is designed, which has the ability to recover the initial shape after deformation and be used as a smart core for sandwich structures. To prove their advantages in the engineering application, a series of thermodynamic behaviors of the SMP honeycomb core are simulated, including loading at high temperature, cooling, unloading at the low temperature, and recovering original shape on heating. Shape memory behaviors of tensile, compressive, bending, and locally sunken deformations are demonstrated and the effect of time and temperature on the recovery process is discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45672.  相似文献   

9.
Silanized vapor‐grown carbon nanofiber/epoxy (silanized‐VGCNF/EP) shape memory polymer (SMP) nanocomposites are successfully fabricated by using a composite molding technology. The surface functionalization of VGCNF is performed using an acid treatment followed by a reaction with silane. The oxidation as well as silanization of VGCNF and silanized‐VGCNF/EP nanocomposites are systematically and explicitly characterized using various analytical methods. The influence of the silane‐functionalized VGCNF on the properties of VGCNF/EP nanocomposites is investigated using field emission scanning electronic microscopy (FE‐SEM) and a dynamic mechanical analysis (DMA). The shape memory properties of the silanized‐VGCNF/EP nanocomposites are evaluated by a fold‐deploy shape memory test. The results reveal that the silanized‐VGCNF is preferably dispersed in the epoxy resin matrix. Furthermore, the glass transition temperature of silanized‐VGCNF/EP nanocomposites is enhanced, and the shape memory properties of the silanized‐VGCNF/EP nanocomposites are significantly improved. POLYM. COMPOS., 35:412–417, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
Shape‐memory polyurethane/multiwalled carbon nanotube (SMP–MWNT) composites with various multiwalled carbon nanotube (MWNT) contents were synthesized, and the corresponding SMP–MWNT fibers were prepared by melt spinning. The influence of the MWNT content on the spinnability, fracture morphology, thermal and mechanical properties, and shape‐memory behavior of the shape‐memory polymer was studied. The spinning ability of SMP–MWNTs decreased significantly with increasing MWNT content. When the MWNT content reached 8.0 wt %, the fibers could not be produced because of the poor rheological properties of the composites. The melt‐blending, extrusion, and melt‐spinning processes for the shape‐memory fiber (SMF), particularly at low MWNT contents, caused the nanotubes to distribute homogeneously and preferentially align along the drawing direction of the SMF. The crystallization in the SMF was promoted at low MWNT contents because it acted as a nucleation agent. At high MWNT contents, however, the crystallization was hindered because the movement of the polyurethane chains was restricted. The homogeneously distributed and aligned MWNTs preserved the SMF with high tenacity and initial modulus. The recovery ratio and recovery force were also improved because the MWNTs helped to store the internal elastic energy during stretching and fixing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
The temperature at which microcracking occurred in symmetrical cross‐ply carbon‐fiber/epoxy composite materials was predicted with a yield‐stress‐based failure model. A fracture mechanics analysis of the in situ strength of the ply groups in a composite material was combined with a compound beam determination of thermal stress development to create the predictive model. This approach, unlike many other models, incorporated the change in the material properties with temperature with the room‐temperature properties of the laminate to predict the low‐temperature behavior of the ply groups. Dynamic mechanical analysis was used to assess microcracking at cryogenic temperatures through the observation of discontinuities in the material properties during failure. Four different material systems were studied, and the model accurately predicted the onset temperature for microcracking in three of the four cases. It was shown that the room‐temperature properties of a fiber‐reinforced polymeric composite laminate, appropriately modified to account for property variations at low temperatures, could be used to predict transverse microcracking as a response to thermal stresses at cryogenic temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1104–1110, 2004  相似文献   

12.
Triple‐shape‐memory polymers are capable of memorizing two temporary shapes and sequentially recovering from the first temporary shape to the second temporary shape and eventually to the permanent shape upon exposure to a stimulus. In this study, unique three‐component, multilayered films with an ATBTA configuration [where A is polyurethane (PU), B is ethylene vinyl acetate (EVA), and T is poly(vinyl acetate) (PVAc)] were produced as a triple‐shape‐memory material via a forced‐assembly multilayer film coextrusion process from PU, EVA, and PVAc. The two well‐separated thermal transitions of the PU–EVA–PVAc film, the melting temperature of EVA and the glass‐transition temperature of PVAc, allow for the fixing of the two temporary shapes. The cyclic thermomechanical testing results confirm that the 257‐layered PU–EVA–PVAc films possessed outstanding triple‐shape‐memory performance in terms of the shape fixity and shape‐recovery ratios. This approach allowed greater design flexibility and simultaneous adjustment of the mechanical and shape‐memory properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44405.  相似文献   

13.
This study presents two effective approaches to significantly improve the electro‐thermal properties and electro‐activated shape recovery performance of shape memory polymer (SMP) nanocomposites that are incorporated with carbon nanofibers (CNFs) and hexagonal boron nitrides (h‐BNs), and show Joule heating triggered shape recovery. CNFs were self‐assembled and deposited into buckypaper form to significantly improve the electrical properties of SMP and achieve the shape memory effect induced by electricity. The h‐BNs were either blended into or self‐assembled onto CNF buckypaper to significantly improve the thermally conductive properties and electro‐thermal performance of SMPs. Furthermore, the shape recovery behavior and temperature profile during the electrical actuation of the SMP nanocomposites were monitored and characterized. It was found that a unique synergistic effect of CNFs and h‐BNs was presented to facilitate the heat transfer and accelerate the electro‐activated shape recovery behavior of the SMP nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40506.  相似文献   

14.
A novel diimidodialcohol monomer, 1,4‐bis[2′‐trifluoromethyl‐4′‐(4″‐glycolformate)‐ trimellitimidophenoxy]benzene (BGTB), was synthesized and characterized. It was reacted with isophthalic acid, maleic anhydride and propylene glycol to produce a novel unsaturated poly(ester‐imide) (BGTB‐UPEI) with imide and trifluoromethyl groups in the polymer backbone. The BGTB‐UPEI resin was diluted with reactive monomer (styrene) to give a low‐viscous poly(ester‐imide)/styrene (BGTB‐UPEI/St) mixed solution, which was then thermally cured to yield thermosetting BGTB‐UPEI/St composite. The effect of processing parameters such as the curing temperature and curing time, reactive monomer concentration and initiator amount on the curing reaction was systematically investigated. Experimental results indicated that the thermally cured BGTB‐UPEI/St composite exhibited much better thermal, mechanical, electrical insulating properties and chemical resistance than the standard unsaturated polyester/polystyrene composite. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
A new class of thermosetting resins has been developed that is based on the cationic copolymerization of regular soybean oil (SOY), low saturation soybean oil (LSS), or conjugated LSS (CLS) with various alkene comonomers initiated by boron trifluoride diethyl etherate (BFE) or related modified initiators. The activation energy for the gelation process for these thermosets ranges from 95 to 122 kJ/mol. A time‐temperature‐transformation (TTT) isothermal cure diagram has been established for the model system LSS45–ST32–DVB15–(NFO5–BFE3) ie 45 wt% low saturation soybean oil, 32 wt% styrene, 15 wt% divinylbenzene, and 5 wt% Norway fish oil ethyl ester plus 3 wt% boron trifluoride diethyl etherate. The effect of curing conditions on the thermophysical and mechanical properties, including the mechanical damping and shape memory properties, has been subsequently investigated using this model thermoset. These findings allow the efficient optimization of desired properties for specific applications. © 2003 Society of Chemical Industry  相似文献   

16.
Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al2O3‐ or silica‐filled silicone membrane. It was observed that the silicone membranes, particularly the silica‐filled membrane, reduced the rate of water absorption (37°C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41226.  相似文献   

17.
The research work presents the modeling of effective properties and thermo‐mechanical behavior of shape memory fiber (SMF) and shape memory polymer (SMP) composite laminates using micromechanical approaches based on the method of mixtures (MOM) and method of cells (MOC). The fiber is made of a nickel‐titanium (Ni‐Ti) shape memory alloy (SMA), while the matrix consists of a shape memory thermoset epoxy polymer (SMP). The use of an SMP matrix provides large strain compatibility with the SMA fiber, while being active at high temperatures without losing its elastic properties. Additionally, the SMP matrix is also able to produce similar pseudoelastic and shape memory effects, which are noticed in SMAs. In the analysis, a two step homogenization scheme is followed. In the first step the effective properties of each layer are determined via a micromechanics approach with iso‐strain conditions. In the second step the effective properties of the SMF‐SMP composite are computed making a thin plate theory assumption, which takes into account the transverse shear deformations. The possible elastic couplings for SMF‐SMP laminates are discussed, and the laminate force and moment resultants are computed for various laminate configurations. The analysis takes into account the effects of phase transformations and the resulting change in the fiber–matrix modulus. The results have been compared by considering different fiber volume fractions, temperatures, fiber orientations, and lamina stacking sequences. The results show that adaptive SMA‐SMP composites laminates can be developed that provide shape controllability via tunable laminate stiffnesses leading to optimal response. Furthermore, the work presents the necessary framework for a reliable and efficient analysis of SMA‐SMP laminates for practical applications. The theory can be directly used in established plate and shell formulations of finite element analysis. Finally, the variations in force and moment resultants with respect to fiber orientations and stacking sequences are presented, which are useful to study the bending and buckling characteristics of active composites for shape control of adaptive structures. The work concludes that efficient adaptive laminate development for high performance composite applications, exhibiting large shape adaptivity, high stresses, and increased stiffness, are feasible as compared to SMA composites without active matrix. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Thermally conductive and electromagnetic interference shielding composites comprising low content of Ag‐plating carbon fiber (APCF) were fabricated as electronic packing materials. APCF as conductive filler consisting of carbon fiber (CF) employed as the structural component to reinforce the mechanical strength, and Ag enhancing electrical conductivity, was prepared by advanced electroless Ag‐plating processing on CF surfaces. Ag coating had a thickness of 450 nm without oxide phase detected. The incorporation of 4.5 wt % APCF into epoxy (EP) substrate yielded thermal conductivity of 2.33 W/m·K, which is approximately 2.6 times higher than CF–EP composite at the same loading. The APCF–EP composite performed electromagnetic shielding effectiveness of 38–35 dB at frequency ranging from 8.2 to 12.4 GHz in the X band, and electromagnetic reflection was the dominant shielding mechanism. At loading content of APCF up to 7 wt %, thermal conductivity of APCF–EP composites increased to 2.49 W/m·K. Volume resistivity and surface resistivity decreased to 9.5 × 103 Ω·cm and 6.2 × 102 Ω, respectively, which approached a metal. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42306.  相似文献   

19.
In this study, a fatty acid‐based comonomer is employed as a styrene replacement for the production of triglyceride‐based thermosetting resins. Styrene is a hazardous pollutant and a volatile organic compound. Given their low volatility, fatty acid monomers, such as methacrylated lauric acid (MLA), are attractive alternatives in reducing or eliminating styrene usage. Different triglyceride‐derived cross‐linkers resins were produced for this purpose: acrylated epoxidized soybean oil (AESO), maleinated AESO (MAESO), maleinated soybean oil monoglyceride (SOMG/MA) and maleinated castor oil monoglyceride (COMG/MA). The mechanical properties of the bio‐based polymers and the viscosities of bio‐based resins were analyzed. The viscosities of the resins using MLA were higher than that of resins with styrene. Decreasing the content of MLA increased the glass transition temperature (Tg). In fact, the Tg of bio‐based resin/MLA polymers were on the order of 60°C, which was significantly lower than the bio‐based resin/styrene polymers. Ternary blends of SOMG/MA and COMG/MA with MLA and styrene improved the mechanical properties and reduced the resin viscosity to acceptable values. Lastly, butyrated kraft lignin was incorporated into the bio‐based resins, ultimately leading to improved mechanical properties of this thermoset but with unacceptable increases in viscosity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
In this article, a conductive foam based on a novel styrene‐based thermoplastic elastomer called poly(styrene‐b‐butadiene‐co‐styrene‐b‐styrene) tri‐block copolymer S(BS)S was prepared and introduced. S(BS)S was particularly designed for chemical foaming with uniform fine cells, which overcame the shortcomings of traditional poly(styrene‐b‐butadiene‐b‐styrene) tri‐block copolymer (SBS). The preparation of conductive foams filled by the carbon black was studied. After the detail investigation of cross‐linking and foaming behaviors using moving die rheometer, the optimal foaming temperature was determined at 180°C with a complex accelerator for foaming agent. Scanning electron microscopy (SEM) images shown that the cell bubbles of conductive foam were around 30–50 µm. The conductivity of foams was tested using a megger and a semiconductor performance tester. SEM images also indicated that the conductivity of foams was mainly affected by the distribution of carbon black in the cell walls. The formation of the network of the carbon black aggregates had a contribution to perfect conductive paths. It also found that the conductivity of foams declined obviously with the foaming agent content increasing. The more foaming agent led to a sharp increasing of the number of cells (from 2.93 × 106 to 6.20 × 107 cells/cm3) and a rapid thinning of the cell walls (from 45.3 to 1.4 µm), resulting in an effective conductive path of the carbon black no forming. The conductive soft foams with the density of 0.48–0.09 g/cm3 and the volume resistivity of 3.1 × 103?2.5 × 105 Ω cm can be easily prepared in this study. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41644.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号