首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polypyrrole and polyaniline copolymer coating (PPy‐PAni) and PPy‐PAni doped with sodium molybdate copolymer coating ( ) were synthesized on stainless steel by cyclic voltammetry. The effect of molybdate on the passivation of stainless steel was investigated by linear sweep voltammetry in 0.2 mol L?1 of oxalic acid. The corrosion prevention performances of these copolymer coatings for stainless steel were investigated by linear sweep voltammetry, electrochemical impedance spectroscopy in 1 mol L?1 of sulfuric acid, and potentiodynamic polarization in 0.1 mol L?1 of hydrochloric acid. Copolymer coating doped with molybdate could accelerate the formation of the passive oxide film and have better corrosion prevention efficiencies than PPy‐PAni coating on stainless steel. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40602.  相似文献   

2.
The electrodeposition of polypyrrole–phosphate (PPy–P) and polypyrrole–tungstenate (PPy–W) on mild steel (MS) were achieved in an oxalic acid medium with cyclic voltammetry techniques. Adherent and homogeneous PPy–P and PPy–W films were obtained. The corrosion behavior of mild steel with phosphate (PPy–P) and tungstenate (PPy–W) composite coatings in 3.5% NaCl solutions were investigated through a potentiodynamic polarization technique, open‐circuit potential–time curves, and electrochemical impedance spectroscopy (EIS). On the basis of a physical model for corrosion of mild steel composites, Zview (II) software was applied to the EIS to estimate the parameters of the proposed equivalent circuit. It was found that the PPy–W coatings could provide much better protection than the PPy–P and polypyrrole coatings. The effects of the phosphate and tungstenate process parameters on the morphology and structure of the passive films were investigated by scanning electron microscopy and electron dispersion X‐ray analyses. The results reveal that the PPy–P and PPy–W coated electrodes offered a noticeable enhancement in protection against corrosion processes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The corrosion‐protection aspects of poly(o‐anisidine) (POA) coatings on mild steel in aqueous 3% NaCl solutions were investigated with electrochemical impedance spectroscopy, a potentiodynamic polarization technique, and open circuit potential measurements. The POA coatings were electrochemically synthesized on mild steel with cyclic voltammetry from an aqueous salicylate medium. The corrosion behavior of the POA coatings was investigated through immersion tests performed in aqueous 3% NaCl solutions, and the recorded electrochemical impedance spectra were fitted with an equivalent circuit to obtain the characteristic impedance parameters. The use of a single equivalent circuit was inadequate to explain the various physical and electrochemical processes occurring at different exposure times. It was suggested that some characteristic element(s) should be incorporated into the equivalent circuit at different stages of the immersion to elucidate the various processes occurring at different exposure times. The evolution of the impedance parameters with the immersion time was studied, and the results showed that POA acted as a protective coating on the mild steel against corrosion in a 3% NaCl solution. From these data, the water uptake and delamination area were determined to further support the corrosion‐protection performance of the POA coating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The electropolymerization of 4‐methyl carbazole‐3‐carboxylic acid was successfully performed on a stainless steel (316L) surface with lithium perchlorate/acetonitrile as the supporting electrolyte. The corrosion resistance of the new coating, poly(4‐methyl carbazole‐3‐carboxylic acid) (PCz), was investigated. To this end, potentiodynamic polarization curves, open circuit potentials, and electrochemical impedance spectroscopy were used to evaluate the capacity of the PCz coating to protect the steel surface. The corrosion tests indicated that PCz exhibited effective anodic protection in a corrosive test solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Waterborne polyurethane (WPU) has been intensively utilized as host materials for intrinsic conducting polymers. However, the stability and compatibility between polyaniline (PANI) and WPU remain a challenge for their composites. In this research, anionic–nonionic sulfonated waterborne polyurethane (SWPU) is adopted as matrix to prepare nanosized PANI‐g‐SWPU dispersions through chemical graft polymerization method, and the stability mechanism is systematically investigated. The PANI‐g‐SWPU dispersion is endowed with much higher stability and no PANI precipitation is detected after storage for 1 year when the PEG molecular weight is 1000 and R value is 1.2. The surface resistivity reaches the minimum when the graft time is 2.5 h, pH value is 2, n(APS)/n(aniline) is 1, and the aniline content is 20 wt %. And the resistivity of the coated paper reaches 1.39 Ω cm, indicating that the as‐prepared PANI‐g‐SWPU dispersion can be directly used as the antistatic coatings, which is also suitable for large scalable production. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45412.  相似文献   

6.
Strongly adherent poly(aniline‐coo‐toluidine) coatings were synthesized on low‐carbon‐steel substrates by the electrochemical copolymerization of aniline with o‐toluidine with sodium tartrate as the supporting electrolyte. These coatings were characterized with cyclic voltammetry, ultraviolet–visible absorption spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and scanning electron microscopy. The formation of the copolymer with the mixture of monomers in the aqueous sodium tartrate solution was ascertained by a critical comparison of the results obtained from the polymerizations of the individual monomers, aniline and o‐toluidine. The optical absorption spectrum of the copolymer was drastically different from the spectra of the respective homopolymers, polyaniline and poly(o‐toluidine). The extent of the corrosion protection offered by poly(aniline‐coo‐toluidine) coatings to low‐carbon steel was investigated in aqueous 3% NaCl solutions by open‐circuit‐potential measurements and a potentiodynamic polarization technique. The results of the potentiodynamic polarization measurements showed that the poly(aniline‐coo‐toluidine) coatings provided more effective corrosion protection to low‐carbon steel than the respective homopolymers. The corrosion rate depended on the feed ratio of o‐toluidine used for the synthesis of the copolymer coatings. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:1868–1878, 2007  相似文献   

7.
A polyaniline–TiO2 hybrid was coated on cotton fabric to make it electrically conductive. A One‐pot method of synthesis with acetic acid medium was used, in which TiCl4 was used as precursor. The oxidative polymerization of aniline adsorbed on TiO2 (anatase form) was performed in the presence of cotton fabric. Fabric crystallinity was least affected by the coatings, as confirmed by XRD analysis. FTIR studies revealed interactions between fiber and hybrid. The morphological study through SEM showed the uniform coating of hybrid over the fibers of the cotton fabric and AFM analysis revealed the rod‐like structure of the hybrid. The strength of the coated fabrics was assessed using abrasion tests. The electrical conductivity was determined using electrochemical impedance spectroscopy (EIS).The conductivity value varied with respect toTiO2 content and ranged in the order 10?4 to 102S/cm. The effect of atmospheric aging was assessed. A more durable conductivity was observed in hybrid‐coated fabric than pristine polyaniline‐coated fabric. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
The development of eco-efficient and environmental friendly active anti-corrosion coatings for metallic substrates represents a fundamental milestone in many engineering applications. Herein, a new type of active corrosion protection coating was successfully synthesized simply based on waterborne polyurethane (WPU) and nanocontainer of Ce3+ modified palygorskite (Ce-PAL). Particularly, the nanocontainer of Ce-PAL was achieved via a facile and green process by cation exchange in water. Inductively coupled plasma atomic emission spectrometry (ICP) revealed that Ce3+ had successfully incorporated into PAL nanofibers with a loading amount of 10.334 g/kg. The salt immersion test, electrochemical potentiodynamic measurements and electrochemical impedance spectroscopy (EIS) demonstrated that the incorporation of Ce-PAL only with 2 wt% into WPU led to a significant improvement of their corrosion protection properties. Finally, according to the results of scanning electron microscopy with energy dispersive X-ray spectroscopy, the active anti-corrosion mechanism of Ce-PAL/WPU coating was proposed.  相似文献   

9.
Polyester fabrics have been treated with plasma to increase polypyrrole/PW12O403‐ (hybrid material) adhesion to its surface. With the plasma treatment, the roughness of the fibers increases as it has been observed by means of atomic force microscopy (AFM). Polar functional groups are also created on the surface of polyester fabrics as X‐ray photoelectron spectroscopy (XPS) measurements have shown. These polar groups contribute to the adhesion of polypyrrole to the fibers. Coatings obtained on plasma treated fabrics were more resistant to washing and rubbing fastness tests. The use of an inorganic counter ion (PW12O) that contains an element with a high atomic number (W) helps to locate zones where the coating is missed; this is achieved by means of micrographs obtained by backscattered electrons (BSE). The electrical resistance of the fabrics was also measured by electrochemical impedance spectroscopy (EIS), obtaining also better results with the plasma treated fabrics. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Aniline/p‐phenylenediamine copolymer [poly(ANI‐cop‐PDA)] was prepared by chemical oxidative polymerization. FTIR and 1H‐NMR analysis indicate that the poly(ANI‐cop‐PDA) is oligomer with end‐capped amino groups, which can cure epoxy resin. The anticorrosion performance of carbon steel (CS) samples coated by epoxy resin coating cured with poly(ANI‐cop‐PDA) and epoxy resin coating cured with triethylenetetramine exposed to 5 wt % NaCl and 0.1 mol/L HCl aqueous solution is studied by the potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the CS coated by epoxy resin coating cured with poly (ANI‐cop‐PDA) has more excellent corrosion protection than that of epoxy resin coating cured with triethylenetetramine. Raman spectroscopy analysis indicates that the surface of CS coated by epoxy resin coating cured with poly(ANI‐cop‐PDA) forms passive layer, which is composed of α‐Fe2O3. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Uniform and strongly adherent poly(o‐toluidine) (POT) coatings have been synthesized on low carbon steel (LCS) substrates by electrochemical polymerization (ECP) of o‐toluidine under cyclic voltammetric conditions from an aqueous sodium tartrate solution. Cyclic voltammetry (CV), UV‐visible absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) measurements, and scanning electron microscopy (SEM) were used to characterize these coatings, which indicates that the sodium tartrate is a suitable medium for the ECP of o‐toluidine and it occurs without noticeable dissolution of LCS. Corrosion protection properties of the POT coatings were evaluated in aqueous 3% NaCl by the potentiodynamic polarization measurements and CV. The result of the potentiodynamic polarization demonstrates that the POT coating has ability to protect the LCS against corrosion. The corrosion potential was about 334 mV more positive in aqueous 3% NaCl for the POT‐coated LCS than that of bare LCS and reduces the corrosion rate of LCS almost by a factor of 50. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 685–695, 2005  相似文献   

12.
Poly(vinylcarbazole) (PVK) and PVK‐alumina (Al2O3) nanocomposite coatings were electrochemically coated on 316 L stainless steel (SS) substrates for corrosion protection of 316 L SS in 3.5 weight (wt) % NaCl medium. The formation of PVK and incorporation of nanoalumina particles in PVK‐Al2O3 nanocomposite coatings were confirmed from attenuated total reflectance‐infrared spectroscopy (ATR‐IR). Thermal analysis (TG) results showed enhanced thermal stability for the composites relative to PVK. Incorporation of Al2O3 nanoparticles enhanced the micro hardness of PVK coated 316 L SS. The dispersion of alumina nanoparticles was examined via scanning electron microscope (SEM) and tunneling electron microscopy (TEM) and revealed distinct features. The influence of nanoparticles on the barrier properties of PVK and PVK‐Al2O3 nanocomposites was evaluated in aqueous 3.5 wt % NaCl by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The results proved that PVK nanocomposite coatings provided better protection for 316 L SS than PVK coatings. The drastic increase in impedance values is due to the high corrosion resistance offered by the PVK nanocomposite coatings that arises due to the interaction between Al2O3 nanoparticles and PVK. The highest corrosion protection shown by the 2 wt % nano Al2O3 incorporated PVK composite coatings proved enhanced corrosion resistance compared to PVK. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44937.  相似文献   

13.
A series of electronically conductive nanocomposite materials that consisted of soluble polypyrrole (PPY) and layered montmorillonite (MMT) clay platelets were prepared by effectively dispersing the inorganic nanolayers of MMT clay in organic PPY matrix via an in situ oxidative polymerization with dodecylbenzene sulfonic acid (DBSA) as dopant. Organic pyrrole monomers were first intercalated into the interlayer regions of organophilic clay hosts and followed by a one‐step oxidative polymerization. The as‐synthesized electronically conductive polypyrrole–clay nanocomposite (PCN) materials were then characterized by Fourier transformation infrared (FTIR) spectroscopy, wide‐angle powder X‐ray diffraction (XRD), and transmission electron microscopy (TEM). PCNs in the form of coatings with low clay loading (e.g., 1.0 wt %) on cold‐rolled steel (CRS) were found to exhibit much better in corrosion protection over those of pristine PPY based on a series of electrochemical measurements including corrosion potential, polarization resistance, and corrosion current in 5 wt % aqueous NaCl electrolyte. Effects of the material composition on the thermal stability, optical properties, and electrical conductivity of pristine PPY along with PCN materials, in the form of fine powder, powder‐pressed pellet, and solution, were also studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), UV‐visible absorption spectra, and four‐point probe technique, respectively. The viscosity of PPY existed in PCN materials and pristine PPY were determined by viscometric analysis with m‐cresol as solvent. The heterogeneous nucleating effect of MMT clay platelets in PPY matrix was studied by wide‐angle powder XRD. The corresponding morphological images of the nucleating behavior of clay platelets in PPY matrix were investigated by scanning electron microscopy (SEM). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3264–3272, 2003  相似文献   

14.
The polypyrrole (PPy) and polypyrrole‐Au (PPy‐Au) nanocomposite films have been sonoelectrochemically synthesized on St‐12 steel electrodes using the galvanostatic technique. Experimental design according to the Taguchi method has been applied to optimize the factors on the synthesis of PPy‐Au nanocomposite coating. Three factors were used to design an orthogonal array L9: Synthesis time (t), Current density (I), and Concentration of HAuCl4 (C). The synthesized Au nanoparticles during polymerization were characterized by Ultraviolet–visible (UV‐visible) spectroscopy. Characterization of the surfaces was done by scanning electron microscope (SEM), energy dispersive X‐ray spectrum (EDX), and atomic force microscope (AFM). The scanning electron microscopy (SEM) image of PPy shows a smooth surface while PPy‐Au nanocomposite film has a compact morphology. Moreover, energy dispersive X‐ray spectrum (EDX) is evidence for the incorporation of Au nanoparticles. The corrosion protection of coatings was investigated by open circuit potential (OCP) time trends, potentiodynamic polarization technique, and electrochemical impedance spectroscopy (EIS) in a NaCl 3.5% solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41087.  相似文献   

15.
《Ceramics International》2022,48(20):30151-30163
The effect of polymeric nanocapsule capping in benzotriazole encapsulated into halloysite nanoclay (HNTs) dispersed into hybrid silica coatings was investigated for corrosion protection of mild steel. Optimization of the amount of inhibitor-loaded halloysite nanotubes with and without capping in the coating sol was carried out. The prepared formulations were dip-coated on mild steel substrates using dip-coater and then cured at 130 °C for 1 h. Surface morphology and elemental analysis of the nanoclay were studied using scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction and Fourier Transform Infrared spectroscopy analyses were carried out to confirm the encapsulation and capping of the halloysite nanoclay. The anti-corrosion and autonomic-healing properties of bare and coated substrates in 3.5 wt% NaCl solution were studied using electrochemical impedance spectroscopy, potentiodynamic polarization measurements and scanning vibrating electrode technique for varying exposure times. The coatings generated from the capped inhibitor-loaded HNTs dispersed sol-gel matrix was seen to provide higher corrosion resistance when compared to uncapped HNT based silica coatings. Electrochemical studies carried out for capped inhibitor-loaded HNT based coatings have shown an increase in charge transfer resistance to 108 Ω cm2 from 106 Ω cm2 of uncapped inhibitor-loaded HNT based coatings.  相似文献   

16.
Conductive polyaniline (PANI) films were deposited on mild steel by an electropolymerization technique in the presence of different types of phosphonium‐based ionic liquids, including tetrabutylphosphonium bromide, tetraoctylphosphonium bromide, and ethyltributylphosphonium diethylphosphate. The formation of the PANI films was followed by repetitive cyclic voltammetry scans and was confirmed with diffuse reflectance infrared Fourier transform spectroscopy. The morphology, surface roughness parameters, and grain sizes of these coatings were evaluated by atomic force microscopy. The corrosion behavior of the bare and PANI‐coated electrodes was investigated by potentiodynamic polarization, open‐circuit potential, and electrochemical impedance spectroscopy techniques in a simulated marine environment in 3.5 wt % aqueous NaCl solutions. The quantum chemical parameters of the PANI composite films were also calculated with parametric method 3, a semi‐empirical quantum mechanical method. The theoretical conclusions were found to be consistent with the reported experimental data. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43923.  相似文献   

17.
Multiwalled carbon nanotubes (MWNTs) were coated with polypyrrole (PPy) using in situ enzymatic polymerization of pyrrole catalyzed by a laccase (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Trametes versicolor. Transmission electron microscopy revealed that the MWNTs were uniformly coated with very thin layers of PPy without any indication of globular polymer aggregate formations. The enzymatic synthesis of the MWNTs/PPy composites was quite simple being performed in a one‐pot aqueous solution (pH 4.0) under mild reaction conditions. The potential of the composites with respect to the development of energy storage devices was demonstrated by fabricating a two‐electrode coin cell capacitor (diameter 20 mm, thickness 1.6 mm) utilizing the composites as electrode materials. The capacitance of the cell was 28.0 F g?1 for the electrode material as measured by a galvanostatic charge–discharge method. The energy density and power density were 2.55 and 805 W kg?1, respectively, which were close to those of the capacitors classified as ultracapacitors. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43307.  相似文献   

18.
In the current scenario, the demand for renewable resources is increasing day by day due to numerous factors. In view of this, current work represents the preparation of wood protective polyurethane (PU) coatings from mahua oil. Mahua oil was used as a starting material for the synthesis of fatty amide by base catalyzed aminolysis reaction. The synthesized fatty amide was converted into the polyetheramide polyols by a condensation reaction with bisphenol C. The structure of the synthesized products was confirmed by the attenuated total reflection‐Fourier transform infrared and 1H‐NMR spectroscopy. The synthesized polyetheramide polyols were used as precursors for the preparation of PUs and the prepared PUs were applied on the wood surface as a protective coating. The coating performance of the PUs was evaluated by the measurement of mechanical, thermal, and microbial properties as well as water, solvent, and chemical resistance. The coating performance revealed that mahua oil can be used as a renewable resource for the preparation of wood protective PUs. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46722.  相似文献   

19.
Dulse‐derived porous carbon (DDPC)–polyaniline (PANI) nanocomposites were fabricated by a method based on the in situ chemical oxidation polymerization of aniline on DDPC. The characterization of the material showed that the nano‐PANI was grown on the surface of DDPC in the form of nanosticks or nanoparticles. The DDPC–PANI nanocomposites were further used as electrode materials for energy‐storage applications. Meanwhile, the effect of the amount of aniline on the electrochemical performance of DDPC–PANI was also investigated. The results show that a maximum specific capacitance of 458 F/g was achieved for the DDPC–PANI nanocomposites; this was higher than that of the DDPC electrode (218 F/g), and the PANI electrode (318 F/g). The specific capacitance of DDPC–PANI remained 66.0% of the initial value after 5000 cycles; this was higher than that of PANI (50.5%). Finally, a device of DDPC–PANI–activated carbon (AC) was assembled with DDPC–PANI as a positive electrode, which exhibited a high energy density of 9.02 W h/kg, which was higher than that of PANI–AC device. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45776.  相似文献   

20.
PANI/epoxy coatings have great promise applications in the industry as the metal corrosion protection coating, and their performance directly determines the life span of the coating and equipment durability. In this study, the performance of epoxy coatings with and without PANI nanowires immersed in 12 wt% NaCl, 5 wt% HCl, and 5 wt% NaOH solutions at different temperature were investigated for the first time. The performance and the degradation reactions of the coating cooperated with PANI nanowires were characterized by the variety of techniques and methods, including ultraviolet–visible spectrophotometry (UV–vis), field emission scanning electron microscopy (SEM), Attenuated Total Reflectance-Fourier transform Infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA). The experiment results indicated that the failure mechanism of the different coatings varied with the different temperatures and solutions. Electrochemical impedance spectra (EIS) results showed that an appropriate content of PANI nanowires improve the protection performance of epoxy coatings in 12 wt% NaCl, 5 wt% HCl, and 5 wt% NaOH solutions, which is attributed to the passivation ability and shielding effect of PANI nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号