首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxy resin (ER) is one of the most important synthetic resins, but it has the disadvantage of lacking impact resistance. However, it can be improved by mixing with polyurethane resin (PU). In this study, Epon 828, triethylenetetramine (TETA), polytetramethylene ether glycol (PTMG), isophorone diisocyanate (IPDI), and dibutyltin dilaurate (DBTDL) were used as raw materials to prepare ER/PU interpenetrating polymer network structures (IPNs) by three different blending processes. The results showed the reactivity between TETA and IPDI were greater than that between TETA and ER. When ER/TETA/PTMG/IPDI/DBTDL were mixed at the same time, or ER and PU resins were prepared separately and then mixed, the ER/PU composites produced had a phase separation inside the structure. The most appropriate blending method was to mix ER with PTMG, IPDI, DBTDL first, and then add TETA after 10 min. The composite formed had a uniform appearance, and had better physical, mechanical, and thermal properties than the others did.  相似文献   

2.
The goal of this article was to synthesize a series of flexible polyimides containing ether linkage in main chain and clarified the effect of this ether linkage on some physical properties such as optical and thermal decomposition. Also, different functional group effects such as carbonyl (? C?O), hexa‐fluoro‐isopropylidene [? C(CF3)2? ] and phenyl (? C6H5) on these physical properties were evaluated. The structural characterization of poly(ether imide)s was performed using Fourier transform infrared, 1H‐nuclear magnetic resonance (NMR), and 13C‐NMR techniques. Optical band gap of polyimides was calculated in the range from 2.57 to 2.81 eV. Thermal characterization of poly(ether imide)s was carried out using thermogravimetry–differential thermal analysis and differential scanning calorimetry. Thermal stability of poly(ether imide)s was evaluated by initial decomposition temperature (Ton) and char. Ton value of polymers was determined in the range from 100 to 195 °C. In addition, glass transition temperatures of poly(ether imide)s were found between 144 and 148 °C. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46573.  相似文献   

3.
A dopamine‐functionalized poly(vinyl alcohol) (PVA) elastomer with melt processability and self‐healing properties was prepared by a new chemical route of graft modification, that is, PVA carboxylation and a carbodiimide reaction. The conventional modifier for PVA sacrificed the intrinsic hydrogen‐bonding interactions and dramatically decreased the mechanical strength. The modifier dopamine, as a catechol derivative, has two hydroxyl groups, which formed hydrogen bonds with the hydroxyl groups of PVA; it also has one benzene ring, which increased the thermal stability. We found that the introduction of dopamine into the PVA molecular structure lowered the melting point, improved the thermal stability, broke the crystalline structure, and enabled thermal processing. Moreover, the modified PVA possessed good mechanical properties, could be self‐healed, and is believed to have potential applications in many fields. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45072.  相似文献   

4.
This work aims to synthesize new series of polysiloxane copolymer through hydrosilylation reaction based on different level of crosslink densities and phenyl content. The results revealed that polysiloxanes resins with phenyl rings increased viscosity up to 3800 cps while displaying a relatively high refractive index of 1.531. The asymmetric phenyl substitution onto chain backbone led to formation of densely packed structure resulting in reduced water absorption and gas permeability of PDMS resins. High level of crosslinking contributed to a high shore A hardness and adhesion strength. It displayed transparency of 97% whose percentage reduction was 1.6% under thermal and 0.6% UV aging. No obvious discoloration was observed during accelerated thermal aging up to 210 min at 80 °C. These results are key attributes that make the synthesized polysiloxane series as ideal candidate for high brightness LED encapsulant. © 2019 Wiley Periodicals, Inc. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47895.  相似文献   

5.
Short-chain-branched-polyethylene (SCB-PE) is extensively used in domestic hot and cold piping systems. SCB-PE nanocomposites using graphene nanoplatelets (GNPs) as a filler, were prepared in this work. The effect of ball-milling as a premixing technique prior to melt-mixing, on the crystallization and the nanomechanical properties of the composites has been studied. Two sets of SCB-PE/GNPs nanocomposites with various filler loadings were prepared; one with and one without the ball-milling step. The dispersion of the filler was evaluated by optical microscopy while the crystallization process was studied using differential scanning calorimetry. The nonisothermal crystallization's experimental data were analyzed using various methods. The materials' nanomechanical behavior was investigated by conducting nanoindentation tests. A finite element analysis process was developed to extract the composites' stress–strain behavior. The composites prepared with ball-milling presented improved dispersion of GNPs in the SCB-PE matrix, which affected the crystallization, while nanoindentation tests showed significantly enhanced mechanical properties.  相似文献   

6.
A higher porosity with better thermostability is desirable for poly(vinyl chloride) (PVC) resin. In this study, high molecular weight PVC resins are prepared by vinyl chloride monomer (VCM)‐diallyl phthalate (DAP) suspension copolymerization in a 20‐L reactor at 50 °C using DAP as chain extender. SEM, BET, and analyses of plasticizer absorption results show the high molecular weight poly(vinyl chloride) (HPVC) by DAP‐VCM copolymerization is loose and porous. With increasing DAP content when the mass ratio of DAP/VCM (ω) is below the gel point, the porosity and the degree of polymerization increase. Nevertheless, the bulk density and particle size decrease. When more than the gel point, these relationships are reversed. Thermogravimetric analysis revealed that the HPVC had better thermostability than that of commercial PVC, and its thermostability increases with increasing ω before it reaches the gel point. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45093.  相似文献   

7.
Electromagnetic interference shielding of magneto-dielectric (BaTiO3-Fe3O4) and magneto-conducting (f-MWCNT-Fe3O4) fillers based polymer electrolyte composites in the X-band have been studied in the present work. Magneto-dielectric and magneto-conducting fillers have been obtained by in situ preparation of Fe3O4 nanoparticles by chemical precipitation in the presence of BaTiO3 and functionalized multiwalled carbon nanotubes (f-MWCNT). Functionalization of MWCNT has resulted in their strong bonding with the polymer electrolyte adversely affecting the charge transport properties and shielding effectiveness. Dielectric, magnetic and conducting properties of the magneto-dielectric and magneto-conducting fillers are found to be significantly different as a result of coating by Fe3O4 nanoparticles on BaTiO3 and f-MWCNT. Combining two fillers in a single nanocomposite has exhibited non-complimentary addition of their individual properties. The ultra-sonication method of dispersion of the magneto-conducting filler has been found to give better conducting and shielding effectiveness in comparison to the homogenization method due to better disentanglement of the nanotubes.  相似文献   

8.
We perform systematic study on the jetting performance of electrohydrodynamic (EHD) with an insulating polymers such as polystyrene (PS) and poly(methyl methacrylate) (PMMA). EHD printing applies electrostatic field to ink droplet hang on nozzle tip, which causes the deformation of the meniscus to generate discrete droplets or continuous jet stream. Although EHD jetting mechanism has been frequently investigated with conducting or semiconducting materials, there still needs to elucidate EHD jetting of insulating polymer materials for producing controllable droplets. In the present study, we focused on how the physical/chemical properties (conductivity, dielectric constant, and molecular weight) of an insulating polymer affect jetting behavior of EHD printing (especially, the deformation of the meniscus and the corresponding morphology of the printed one). The relationship between the printing parameters and applied voltage is also investigated, thereby allowing the optimization of EHD printings for PS and PMMA. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45044.  相似文献   

9.
The effect of cold-crystallization on poly (lactic acid) (PLA) injection-molded parts was systemically investigated at different annealing temperatures (80/100/120°C) and annealing times (0.5/1/1.5/2 hr). The relative crystallinity (Xc) and crystal form (α' and α) of samples was investigated by differential scanning calorimetry (DSC) and wide X-ray angle diffraction (WAXD). The dependence of the thermal and mechanical performance on relative crystallinity and crystal form/morphology was discussed in detail. A linear relationship between the increment of heat distortion temperature (HDT) and that of Xc was found. The tensile strength, tensile modulus and storage modulus all increased with annealing time and annealing temperature, while the tensile toughness presented a different behavior. The elongation at break for specimens reached a maximum value of 16.9% after annealing at 80°C for 2 hr, which is a threefold improvement compared to PLA samples prepared without annealing. This work suggests that annealing is an effective method for tailoring the physical properties of PLA products.  相似文献   

10.
Waterborne polyurethane (WPU) is one of the most important resins. The properties of WPU can be modified by introducing inorganic components. Tetraethoxysilane (TEOS) is a precursor for preparing inorganic polymers and can be used to prepare WPU/silica hybrids. In this study, WPU dispersion was synthesized by reacting polytetramethylene ether glycol and dimethylolpropionic acid with isophorone diisocyanate, followed by chain extension with ethylenediamine. After mixing WPU with TEOS, the mixture was sealed and stored at room temperature for different lengths of times. The influence of time on the characteristics of the WPU/TEOS mixture and the properties of films were investigated. The results showed that the viscosity, surface tension and average particle size of the mixture increased with prolonged storage time. 29Si-NMR analysis indicated that the structure of silica exists in the WPU film. DSC, DMA and TGA results showed that WPU/silica films made from the mixture have less thermal activity, higher storage modulus, lower damping peak heights and better heat resistance after relatively long storage times.  相似文献   

11.
To carry out suspension polymerization of styrene in the presence of carbon black, an effective method was introduced to modify carbon black using nitric acid for oxygen treatment. The surface modification of carbon black with oxidation was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy (SEM), which demonstrated that the chemical structure of carbon black has clearly changed. Compared with pristine carbon black (CB), SEM illustrates that the aggregation phenomenon of modified carbon black (MCB) was clearly weakened. After modification, the aggregation and inhibition effects of MCB on the polymerization of polystyrene/modified CB (PS/MCB) composite particles are obviously weakened. The lipophilicity of CB after modification was also increased during the synthesis of PS/MCB. The oxidized CB was successfully dispersed by polystyrene using in situ suspension polymerization. The dispersion and dosage of MCB in PS/MCB composite particles was greatly improved over that of CB in PS/CB composite particles. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46387.  相似文献   

12.
In this work, the optical properties of a corn starch-based film were correlated with its structural properties. Scanning electron microscopy was performed to determine if incorporation of starch into the matrix gives a homogenous and smooth surface. X-ray diffraction was performed to identify the relative degree of crystallinity. The optical properties of the film in the range 300 to 2500 nm were studied, showing diffuse total transmissivity and total absorption coefficients comparable with that of low-density polyethylene films. The process used in this research is carried out in an aqueous solvent, without using any toxic raw material, and prepared by casting. The process allows for the use of different additives. This processing of the starch film represents a great advantage also because it takes a maximum of 10 h, four times less than other processes, and no special equipment is needed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47111.  相似文献   

13.
A novel bisphthalonitrile monomer containing allyl groups (DBPA‐Ph) had been synthesized via the reaction of diallyl bisphenol A (DBPA) and 4‐nitrophthalonitrile. The chemical structure of DBPA‐Ph was confirmed by 1HNMR, 13CNMR, and FTIR spectroscopy. The curing behaviors and processability of DBPA‐Ph were studied by differential scanning calorimetry (DSC) and dynamic rheological analysis. The monomer manifested a two‐stage thermal polymerization pattern. The first stage was attributed to the polymerization of allyl groups and the second to the ring‐form polymerization of cyano groups. The result of dynamic rheological analysis indicated the monomer had wide curing window and the self‐catalyzed curing behavior. DBPA‐Ph polymers were prepared from the thermal polymerization with short curing time, showing high glass transition temperature (>350°C) and attractive thermal decomposition temperature (>430°C). The outstanding glass transition temperature, desirable thermo‐oxidative stabilities, good processability and sound process conditions could provide more applications to the DBPA‐Ph polymers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41203.  相似文献   

14.
A novel polyhedral oligomeric octadiphenylsulfonylsilsesquioxane (ODPSS) was synthesized from octaphenylsilsesquioxane and benzenesulfonyl chloride via a Friedel–Crafts reaction with a high yield. ODPSS was identified by Fourier transform infrared spectroscopy, 1H‐NMR, 13C‐NMR, 29Si‐NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI–TOF MS), wide‐angle X‐ray diffraction, and elemental analysis to be a kind of polyhedral oligomeric silsesquioxane of a T8R8 structure. ODPSS exhibited superior thermal stability according to thermogravimetric analysis. Its initial thermal decomposition temperature (Tonset) was at 491°C in air and 515°C in nitrogen. Thermal and mechanical properties of epoxy resin (EP) composites with ODPSS added were studied by differential scanning calorimetry and tensile testing. The results show that the incorporation of ODPSS at a low loading content not only improved the glass‐transition temperature of the EP composites but also enhanced their tensile strength. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40892.  相似文献   

15.
Graphene oxide nanosheets were decorated by amino‐silane modified silica nanoparticles. An electrostatic interaction between the negative charge of oxygen‐containing groups of graphene oxide and the positive charge of amino‐silane functional groups on the surface of silica nanoparticles plays a major role for the interfacial interaction of these two materials. The hybrid material was then used as a reinforcement in polypropylene (PP) composite. The increasing tensile strength at yield, tensile, and flexural modulus of the PP composite at a graphene oxide‐ amino‐silane silica loading content of 20 wt % are about 24.81, 55.52, and 30.35%, respectively, when compared with those of PP. It is believed that GO assists the dispersion of SiO2 nanoparticles to the polymer matrix because of its unique structure having hydrophilicity due to its oxygen functional groups and hydrophobicity owing to its backbone graphitic carbon structure. This hybrid material may also be used as the reinforcement in other polyolefins. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44382.  相似文献   

16.
Nanocomposites based on poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate‐co‐octadecyl methacrylate) (M/O) matrices and four different types of multiwall carbon nanotubes: pristine, oxidized (MWCNT–COOH), methyl ester (MWCNT–COOCH3), and dodecyl ester (MWCNT–COOC12H25) functionalized, were prepared in situ by radical (co)polymerization. The effectiveness of preparation of nanocomposites regarding dispersion and distribution of various MWCNT in polymer matrices was sized by Scanning electron microscopy. In case of PMMA matrix, the best dispersion and distribution were accomplished for MWCNT–COOCH3 due to their chemical resemblance with polymer matrix. After the introduction of 10 mol % of octadecyl methacrylate in polymer matrix a fairly good dispersion and distribution of MWCNT–COOCH3 were retained. The addition of 1 wt % of MWCNTs caused a significant reduction in the degree of polymerization of the PMMA matrix. But at the same time, the present MWCNTs increased storage modulus of PMMA nanocomposites except for dodecyl ester functionalized MWCNT. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46113.  相似文献   

17.
Herein, form-stable phase change material fibrous composite containing nanoparticles was prepared via a single-step green approach using single-nozzle electrospinning for the first time. Polyethylene glycol (PEG), polyvinyl alcohol (PVA), and water were used as PCM, polymeric support and safe solvent together with simultaneous formation of nanoparticles. The introduced manner not only is free from applying organic solvents, separate addition, or buying nanoparticles and coaxial electrospinning but also it is easy and cost-effective to use for different applications. Thermal energy storage capacity of the fabricated samples reached to 135.88 and 136.27 J/g in melting process for the nanofibers and nanofibers with nanoparticles, respectively, which are mostly higher than the reported works. Meanwhile supercooling temperature was decreased for (50% PVA/50% PEG/0.1% AgNO3/1% TiO2) nanofibers compared to the other fabricated composites and the pure PEG. The effects of different weight ratio of polymers in spinning solutions, amount of titanium dioxide nanoparticles and silver nitrate, range of phase change transition and thermal endurance and stability of the samples were further discussed in details. Altogether, this renders a single-step safe route for producing form-stable PCM nanofibrous composites and also a broad insight concerning the thermal behavior of such composites for diverse renewable energy applications.  相似文献   

18.
A systematic study using design of experiments was applied in order to map out the thermal stabilization of electrospun polyacrylonitrile mats and to investigate how oxidation and cyclization reactions are affected by rate, temperature, and time in an oxidative environment. Cyclization indexes were estimated by a simple methodology based on differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy data. Values of enthalpy and relative intensities of bands assigned to C?N and C?N bonds were used on calculation. The statistical planning applied in this study was important to show that not always longest treatment is effective to stabilize polyacrylonitrile, but also samples obtained in less than 3 h presented low values of exothermic peak on DSC, values of cyclization indexes near to 90%, both from DSC and Fourier transform infrared spectroscopy techniques, reduced weight loss in thermogravimetric analysis and O/C ratio higher than 10% by X‐ray photoelectron spectroscopy, that are appreciated characteristics to a precursor of high‐performance carbon materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45458.  相似文献   

19.
While ultrasonication is universally employed for dispersion and distribution of carbon nanotubes (CNTs) in a solvent or polymer solution, the current work focuses on the underlying mechanisms of CNT demixing and CNT damage that can occur during processing. Here, multi-walled CNTs were dispersed in a polycaprolactone polymer matrix using an established solution processing technique. Electrical, rheological, and mechanical characterization results suggest that once nanocomposite property enhancements reach an optimal level, further sonication leads to a decrease in the corresponding properties due to a combination of CNT damage and demixing mechanisms. Evidence of CNT damage from transmission electron microscopy, poor CNT distribution from optical image analysis and shear-induced crystallization results, and reagglomeration observed from ultraviolet–visible results, taken together, suggest that mechanisms of demixing and damage of the CNTs coexist for excessive sonication times.  相似文献   

20.
Three novel bismaleimide monomers (MBA‐BMI, EBA‐BMI, and PBA‐BMI) with unsymmetrical backbone and different pendant groups were synthesized using asymmetric diamine and maleic anhydride as the precursors. The prepared bismaleimide monomers show good solubility in common organic solvents such as acetone and tetrahydrofuran. The EBA‐BMI melt treated at 180 °C also shows low viscosity about 190–934 mPa s at the temperature range of 160–139 °C below its melting point (166 °C). In addition to the good processability, all three cured bismaleimides show high storage moduli at high temperatures (2.0 GPa at 400 °C), high glass transition temperatures over 400 °C, and good thermal stability with the 5% weight loss temperatures around 470 °C under nitrogen atmosphere. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43491.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号