首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNTs) were incorporated in an epoxy matrix that was then reinforced with carbon fibers. A fixed amount (0.5 wt.%) of different types of CNTs (functionalized and non-functionalized) were dispersed in the epoxy matrix, and unidirectional prepregs are produced. The key issues like CNT dispersion and its stability during the processing steps and the final mechanical properties of composites are discussed in detail. The temperature-viscosity profile of the epoxy matrix reinforced with different types of CNTs indicated a strong dependency on the type of CNTs. The pronounced effect of the presence of CNTs in the matrix is reflected by the decrease of the coefficient of thermal expansion by ∼32% for the double-walled CNTs epoxy system. There is also a substantial increase in fracture toughness Mode-1 by over 80% for the pristine multi-walled CNTs in combination with the epoxy resin modified by using a compatibilizer. The influence of such CNT-resin modification also induced overall positive trends in all the mechanical properties that were evaluated.  相似文献   

2.
Resin Film Infusion (RFI) has been used to fabricate composites with continuous unidirectional E‐glass and epoxy with low weight fractions of carbon nanotubes (CNTs) in matrix. An ultrasound‐assisted dissolution‐evaporation method with thermoplastics or block copolymers as dispersing agents for nanoparticles enabled uniform dispersion of CNTs in the resin. Rheological characterization of CNT‐filled epoxy revealed that viscosity, and hence processing of the resin remains unaffected as compared to pristine resin at elevated temperatures of subsequent composite manufacturing. Local flow of the modified resin through the sandwiched fabric plies in RFI process as against the global flow in traditional liquid composite molding processes, made sure that uniform distribution of nanoparticles is accomplished throughout the composite. Compressive properties of hybrid composites improved considerably with CNTs at loading fractions as low as 0.2 wt %. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
In this work, electrical conductivity and thermo‐mechanical properties have been measured for carbon nanotube reinforced epoxy matrix composites. These nanocomposites consisted of two types of nanofillers, single walled carbon nanotubes (SW‐CNT) and electrical grade carbon nanotubes (XD‐CNT). The influence of the type of nanotubes and their corresponding loading weight fraction on the microstructure and the resulting electrical and mechanical properties of the nanocomposites have been investigated. The electrical conductivity of the nanocomposites showed a significantly high, about seven orders of magnitude, improvement at very low loading weight fractions of nanotubes in both types of nanocomposites. The percolation threshold in nanocomposites with SW‐CNT fillers was found to be around 0.015 wt % and that with XD‐CNT fillers around 0.0225 wt %. Transmission optical microscopy of the nanocomposites revealed some differences in the microstructure of the two types of nanocomposites which can be related to the variation in the percolation thresholds of these nanocomposites. The mechanical properties (storage modulus and loss modulus) and the glass transition temperature have not been compromised with the addition of fillers compared with significant enhancement of electrical properties. The main significance of these results is that XD‐CNTs can be used as a cost effective nanofiller for electrical applications of epoxy based nanocomposites at a fraction of SW‐CNT cost. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The thermal and ablative properties of carbon nanotube (CNT) and nanodiamond (ND) reinforced carbon fibre epoxy matrix composites were investigated by simulating shear forces and high temperatures using oxyacetylene torch apparatus. Three types of composite specimens—(i) carbon fibre epoxy matrix composite (CF/Epoxy), (ii) carbon fibre epoxy matrix composite containing 0.1 wt-% CNTs and 0.1 wt-% NDs, and (iii) carbon fibre epoxy matrix composite containing 0.2 wt-% CNTs and 0.2 wt-% NDs—were explored. The ablative response of composites was studied through pre- and post-burnt SEM analysis and further related with thermogravimetric analysis, weight loss profile and thermal conductivity measurements. The novel nanofiller composites showed marked improvement in their thermal and ablative properties. A 22% and 30% increase in thermal conductivity was observed for composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. These nanofillers also improved the thermal stability of thermosetting epoxy matrix, and an increase of 13% and 20% was recorded in the erosion rate of composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. This improvement is due to the increased char yield produced by the increase in the loading of nanofillers, i.e. CNTs and NDs. Insulation index and insulation to density performance have also been improved due to increased thermal conductivity and char yield.  相似文献   

5.
Carbon nanofillers with different surface functional groups and aspect ratios, including carboxyl carbon nanotubes, un-functionalized carbon nanofibers (CNFs), glycidyloxypropyl-trimethoxysilane carbon nanotubes (GPS-CNTs) and nanofibers were evaluated for their potential for increasing the interlaminar fracture toughness of an S2-glass fiber/epoxy composite. The fillers were added in the matrix of the fiber reinforced plies, in the resin interlayer between plies, or in both regions. Comparisons were made based on mode I and mode II interlaminar fracture toughness. For composites made with CNTs dispersed in the matrix, fracture toughness was largely unaffected except for a slight increase seen with long GPS-CNTs. However, adding a CNF or CNT modified resin interlayer significantly increased the fracture toughness, with the highest improvement over the baseline material achieved by adding long GPS-CNTs in the interlayer (79% and 91% for mode I and mode II onset toughness, respectively). Important material parameters identified for improving interlaminar fracture toughness are the nanofiller aspect ratio and concentration at the fracture plane. Based on microscopic evaluations of the fracture surfaces, a high density of high aspect ratio nanofillers causes the best entanglement between the filler and glass fibers and effectively obstructs interlaminar crack propagation.  相似文献   

6.
A mixed-curing-agent assisted layer-by-layer method is reported to synthesize carbon nanotube (CNT)/epoxy composite films with a high CNT loading from ∼15 to ∼36 wt.%. The mixed-curing-agent consists of two types of agents, one of which is responsible for the partial initial curing at room temperature to avoid agglomeration of the CNTs, and the other for complete curing of epoxy resin at high temperature to synthesize epoxy composite films with good CNT dispersion. The electrical conductivity of the composites shows a value up to ∼12 S/m, which is much higher than that for CNT/epoxy composites with a low CNT loading prepared using conventional methods.  相似文献   

7.
Carbon fiber‐reinforced epoxy composites, with incorporated carboxylic multiwall carbon nanotubes (CNTs), were prepared using vacuum‐assisted resin infusion (VARI) molding, and the in‐plane and out‐of‐plane properties, including mode‐I (GIc) and mode‐II (GIIc) interlaminar fracture toughness, interlaminar shear strength (ILSS), tensile, and flexural properties were measured. A novel spraying technique, which sprays a kind of epoxy resin E20 with high viscosity after spraying the CNTs, was adopted to deposit the CNTs on the surface of carbon fiber fabric. The E20 was used to anchor CNTs on the fabric surface, avoiding that the deposited CNTs were removed by the infusing resin during VARI process. The spraying processing, including spraying amount and spraying sequence, was optimized based on the distribution of CNTs on the fibers. After that, three composite specimen groups were fabricated using different carbon fiber fabrics, including as‐received, CNT‐deposited with E20, and CNT‐deposited without E20. The effects of CNTs on the processing quality and mechanical properties of carbon fiber‐reinforced polymer composites were studied. The experimental results show that all studied laminates have uniform thickness with designed values and no obvious defects form inside the laminates. Compared with the composite without CNTs, depositing CNTs with E20 increases by 24% in the average propagation GIc, by 11% in the propagation GIIc and by 12% in the ILSS, while it preserves the in‐plane mechanical properties, However, depositing CNTs without E20 reduces interlaminar fracture toughness. These phenomena are attributed to the differences in the distribution of CNTs and the fiber/matrix interfacial bonding for different spraying processing. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

8.
In this study, synergy between graphene platelets (GnPs) and carbon nanotubes (CNTs) in improving lap shear strength and electrical conductivity of epoxy composite adhesives is demonstrated. Adding two-dimensional GnPs with one-dimensional CNTs into epoxy matrix helped to form global three-dimensional network of both GnPs and CNTs, which provide large contact surface area between the fillers and the matrix. This has been evidenced by comparing the mechanical properties and electrical conductivity of epoxy/GnP, epoxy/CNT, and epoxy/GnP-CNT composites. Scanning electron microscopic images of lap shear fracture surfaces of the composite adhesives showed that GnP-CNT hybrid nanofillers demonstrated better interaction to the epoxy matrix than individual GnP and CNT. The lap shear strength of epoxy/GnP-CNT composite adhesive was 89% higher than that of the neat epoxy adhesive, compared with only 44 and 30% increase in the case of epoxy/GnP and epoxy/CNT composite adhesives, respectively. Electrical percolation threshold of epoxy/GnP-CNT composite adhesive is recorded at 0.41 vol %, which is lower than epoxy/GnP composite adhesive (0.58 vol %) and epoxy/CNT composite adhesive (0.53 vol %), respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48056.  相似文献   

9.
Carbon nanotubes (CNTs) were used to improve the tensile properties of an epoxy resin and its continuous carbon fiber (CF) reinforced composites. Micrography picture showed that CNTs has been well incorporated into the composites, and made the fracture cross section more rougher through sharing the stress. For the CNT/epoxy composite, the tensile strength and modulus both increased upon the CNT addition, and at a CNT volume concentration of 2.0%, the maximum enhancements in the tensile strength and modulus were achieved as 26.7% and 21.5%, respectively. For the CNT‐CF/epoxy composite, the maximum enhancement in tensile strength was achieved as 11.6% at a CNT volume concentration of 1.0% and then decreased with the further increase of the CNT addition, but the tensile modulus increased monotonically upon the CNT addition. POLYM. COMPOS., 36:1664–1668, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
Since the development of carbon nanotubes (CNTs) in 1991, they have received much attention with improved mechanical, thermal, and electrical properties of their composites compared to common polymer composites. The CNTs are currently used to increase the modulus of common thermoplastics and thermosets, including urethanes and epoxies. The CNTs are difficult to disperse within any media because of limited chemical reactivity and potential agglomeration in their “as grown” state. This study evaluated the effect of incorporating bundled and unbundled CNTs at different concentrations into Polyurethane/CNT/woven fiber reinforced composites. Optical microscopy and atomic force microscopy (AFM) characterized the dispersion of CNTs within the polymer matrix in injection molded CNT/polyurethane composites. Polyurethane/CNT/woven fiber reinforced composite plaques were prepared and then characterized by mechanical compression testing. Optical microscopy and AFM qualitatively determined a decreased agglomerate size resulting in improved mechanical properties. Results of this study show significant differences in yield stress, stress at failure, and modulus of elasticity within the various treatments. No significant differences were found for yield strain, strain at failure, and toughness. However, the conservativeness of the statistical model warrants further investigation for strain at failure and toughness with possible interaction effects of CNT concentration for each composite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
The Mode I interlaminar fracture behavior of woven carbon fiber/epoxy composite laminates incorporating partially cured carbon nanotube/epoxy composite films has been investigated. Laminates with films containing carbon nanotubes (CNTs) in the as‐received state and functionalized with polyamidoamine were evaluated, as well as laminates with neat epoxy films. Double‐cantilever beam (DCB) specimens were used to measure GIc, the critical strain energy release rate (fracture toughness) versus crack length. Post‐fracture microscopic inspection of the fracture surfaces was performed. Results show that initial fracture toughness was improved with the amino‐functionalized CNT/epoxy interleaf films, but the important factor appears to be the polyamidoamine functionalization, not the CNTs. The initial fracture toughness remained relatively unaffected with the incorporation of neat epoxy and as‐received CNT/epoxy interleaf films. Plateau fracture toughness was unchanged with the use of functionalized CNT/epoxy interleaf films, and was reduced with the use of neat epoxy and as‐received CNT/epoxy interleaf films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
This work analyzes the morphology and behavior of hybrid composites reinforced with carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). In order to avoid the weak interface of laminar nanofillers, GNPs were functionalized with amine groups. Different tendencies were observed as a function of the measured property. Storage modulus showed a synergic trend, being the stiffness of hybrid CNT/GNP/epoxy composites higher than the corresponding ones measured in neat epoxy composites reinforced with CNTs or GNPs. In contrast, the thermal and electrical conductivity increased with the nanofiller addition, the final value of the mentioned properties in the hybrid composites was strongly influenced by specific graphitic nanofiller. Neat GNP/epoxy composites showed the highest thermal conductivity, while neat CNT/epoxy composites presented the highest electrical conductivity. This behavior is explained by the observed morphology. All composites exhibited a suitable nanofiller dispersion. However, on hybrid GNP/CNT/epoxy composites, CNTs tend to be placed between nanoplatelets, forming bridges between nanoplatelets. This morphology implies a less effective electrical network, limiting the synergic effect in the properties, which requires percolation. In spite of this, the hybrid GNP/CNT/epoxy composites showed a better combination of properties than the neat composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46475.  相似文献   

13.
We study mechanical reinforcement in a widely used epoxy matrix with the addition of graphene nanoplatelets (GnPs) and various mixture ratios of carbon nanotubes (CNTs) with GnPs. Two different dimensions of GnPs were used with flake sizes of 5 μm and 25 μm to investigate the influence of nanofiller size on composite properties. In GnP reinforced composites, bigger flakes showed greater reinforcement at all GnP concentrations as they actively control the failure mechanisms in the composite. In the mixture samples, highest CNT content (9:1) showed marked improvement in fracture toughness of 76%. The CNT:GnP ratio is an interesting factor significantly influencing the properties of the epoxy based nanocomposites. The combination of high aspect ratio of CNTs and larger surface area of GnPs contribute to the synergistic effect of the hybrid samples. Thermal conductivity consistently increases with incorporation of GnPs in the matrix. Transmission electron microscopy (TEM) images confirm the uniform nanofiller dispersion achieved in the composites. For the hybrid samples CNTs are seen to align themselves on the GnP flakes creating an inter-connected strong nanofiller network in the matrix. The homogeneous nanofiller dispersions have been achieved by high shear calendaring which is a method capable of being industrially scaled up.  相似文献   

14.
This study reports the preparation of advanced carbon fiber composites with a nanocomposite matrix prepared by dispersing multiwall carbon nanotubes (CNTs) in a powder type epoxy oligomer with two different processing techniques (1) master batch dilution technique and (2) direct mixing (with the help of twin‐screw extruder in both cases). The master batch technique shows a better efficiency for the dispersion of the CNTs aggregates. The rheological results demonstrate that the incorporation of the CNTs into the epoxy oligomer leads, as expected, to a marked increase in the viscosity and of the presence of a yield stress point that also depends on the processing technique adopted. Carbon fiber (CFRP) and glass fiber (GFRP) composite materials were produced by electrostatic spraying of the epoxy matrix formulations on the carbon and glass fabric, respectively, followed by calendering and mold pressing. The mechanical properties of the obtained epoxy/CNT‐matrix composite materials, such as interlaminar fracture toughness, flexural strength, shear storage and loss moduli are discussed in terms of the processing techniques and fabric material. The incorporation of 1 wt% CNTs in the epoxy matrix results in a relevant increase of the fracture toughness, flexural strength and modulus of both CFRP and GFRP. POLYM. COMPOS., 37:2377–2383, 2016. © 2015 Society of Plastics Engineers  相似文献   

15.
Carbon fiber‐reinforced epoxy composites (CFEC) are fabricated infusing up to 0.40 wt % amino‐functionalized XD‐grade carbon nanotubes (XDCNT) using the compression molding process. Interlaminar shear strength (ILSS) and thermomechanical properties of these composites are evaluated through short beam shear and dynamic–mechanical thermal analysis tests. XDCNTs are infused into Epon 862 resin using a mechanical stirrer followed by sonication. After the sonication, the mixture was placed in a three roll milling processor for three successive cycles at 140 rpm for uniform dispersion of CNTs. Epikure W curing agent was then added to the resin using a high‐speed mechanical stirrer. Finally, the fiber was reinforced with the modified resin using the compressive mold. ILSS was observed to increase by 22% at 0.3 wt % XDCNT loading. Thermal properties, including storage modulus, glass transition temperature, and crosslink density demonstrated linear enhancement up to the 0.3 wt % XDCNT loading. Scanning electron microscopy revealed better interfacial bonding in the CNT‐loaded CFEC. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40709.  相似文献   

16.
Epoxy composites doped with different content of graphene nanoplatelets (GNPs) and/or carbon nanotubes (CNTs) have been manufactured. Their chemical, thermal, electrical, and mechanical behaviors have been studied, evaluating also their performance as coatings of glass fiber composite substrates. It is confirmed that the graphitic nanofillers present different efficiency as nanofillers as a function of their geometry. CNTs are much higher efficient electrical nanofillers than graphene, but an important synergetic effect is determined in the electrical conductivity of hybrid GNP/CNT/epoxy composites. In contrast, the thermal conductivity scarcely depends on the geometry of graphitic nanofillers but on the graphitic nanofiller content. Adding up to 12 wt% GNP and 1 wt% CNT, the thermal conductivity of the epoxy resin can be increased more than 300%. GNP presents high efficiency to increase the barrier properties, reducing the water absorption up to 30%. The stiffness of nanocomposites proportionally increases with graphitic addition, up to 50%, regard to the modulus of the neat epoxy resin. The adherence of coatings over glass fiber composite substrates increases by nanofiller addition due to the nanomechanical anchoring. However, the water uptake induces a higher weakening on nanodoped composites due to the preferential water absorption by the interface.  相似文献   

17.
The driver for this study is the observation that heating of carbon nanotubes (CNTs) with electromagnetic field can offer a more efficient and cost‐effective alternative in heat transfer for the production of composites. The idea of this study is twofold; CNT can work as microwave (MW) radiation susceptors and they can act as nanoreinforcements in the final system. To test these assumptions, a household oven was modified to control the curing schedule. Polymers with different CNT concentrations were prepared (0.5 and 1.0 wt %). The dispersion of the CNTs in the epoxy was achieved using shear‐mixing dissolver technique. MW and conventionally cured specimens were also produced in a convection oven for reference. Thermal and mechanical tests were used as control point. A curing schedule investigation was further performed to quantify the energy and time‐saving capabilities using CNT and MWs. The presence of CNTs into epoxy matrix has been proven beneficial for the shortening of the curing time. MW‐cured composites showed the same degree of polymerization with the conventionally cured composites in a shorter time period and this time was reduced as the CNT concentration was increased. A good distribution of the CNT is required to avoid hot spot effects and local degradation. Mechanical performance was, in some cases, favored by the use of CNT. The benefit from the use of MWs and CNT could reach at least 40% in terms of energy needed and time without sacrificing mechanical performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
《Polymer Composites》2017,38(9):1849-1863
Hybrid composites containing endless glass fiber reinforcement and surface‐functionalized carbon nanotubes (CNTs) dispersed in the matrix phase were produced by resin transfer molding (RTM). An efficient surface modification of the nanotubes enhances the compatibility with the matrix system and the dispersion quality, enabling the impregnation process via liquid composite molding. We assessed the quality of the RTM process by newly developed methodologies for the quantification of the filtering of CNTs. First, we established a method to analyze the CNT length distribution before and after injection for thermosetting composites to characterize length‐dependent withholding respectively the size distribution of nanotubes in the hybrid composites. Second, the resulting test laminates were locally examined by Raman spectroscopy and compared to reference (nanocomposite) samples of known CNT content to non‐destructively quantify the local CNT concentration along the resin flow path. Moreover, the thermal and mechanical properties of the modified composites were investigated. The nanocomposites containing 0.5 wt% surface‐functionalized CNTs exhibited superior ductility and increased fracture toughness. Glass fiber hybrid composites containing 0.5 wt% functionalized CNTs in the resin phase exhibited increased fracture toughness in mode I and a slight deterioration in mode II due to the constrained formation of hackles. POLYM. COMPOS., 38:1849–1863, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
An experimental study is carried out to quantitatively assess the dispersion quality of carbon nanotubes (CNTs) in epoxy matrix as a function of CNT variant and weight fraction. To this end, two weight fractions (0.05% and 0.25%) of as-grown, oxidized, and functionalized CNTs are used to process CNT/epoxy nanocomposites. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared analysis of different variants of CNTs are used to establish the efficiency of purification route. While the relative change in mechanical properties is investigated through tensile and micro-hardness testing, thermal conductivity of different nanocomposites is measured to characterize the effect of CNT addition on the average thermal properties of epoxy. Later on, a quantitative analysis is carried out to establish the relationship between the observed improvements in average composite properties with the dispersion quality of CNTs in epoxy. It is shown that carboxylic (-COOH) functionalization reduces the average CNT agglomerate size and thus ensures better dispersion of CNTs in epoxy even at higher CNT weight fraction. The improved dispersion leads to enhanced interfacial interaction at the CNT/epoxy interface and hence provides higher relative improvement in nanocomposite properties compared to the samples prepared using as-grown and oxidized CNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48879.  相似文献   

20.
The reinforcement of mechanical properties of polymeric materials is often important for widening their applications; however, it remains a technical challenge to effectively increase toughness without degrading stiffness and strength of the polymers. In this work, by a facile methodology combining solution mixing and melt blending, poly(vinylidene fluoride)/multi‐walled carbon nanotubes (PVDF/MWCNTs) composite with exceptionally enhanced ductility and toughness are prepared. With only 0.2 wt % CNT loading, the elongation at break has increased from originally 138% to almost 500%, while toughness improved by as much as 386%, without compromising the stiffness and strength. Note that raw CNTs are directly dispersed in the matrix without any surface modification. In order to elucidate this novel enhancement of ductility of PVDF/MWCNTs composites, we carried out detailed analyses based on results from ultra‐small‐angle X‐ray scattering (USAXS), cryo‐fractured surface morphology, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). It is proposed that the enhanced ductility are contributed by a synergistic combination of “void pinning effect” of CNT, as well as the formation of γ phase polymorph as the interphase in the PVDF/CNTs composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43610.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号