首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly (lactic acid) (PLA) is a renewable and biodegradable polymer with high modulus, high strength but low toughness. Blending PLA with plant fiber has been believed an available strategy to improve the toughness of PLA. PLA/Flax composites were fabricated by extrusion and injection molding processes. The flax fiber surfaces were modified before blending to improve the compatibility, and the chemical structures of both untreated and treated fiber were characterized by Fourier transform infrared spectroscopy. Results of mechanical test showed that the impact strength and elongation at break of PLA/Flax composites were remarkably higher than PLA. The impact fractures of PLA/Flax composites were also observed by scanning electron microscope. The results showed uniform dispersion of fibers in PLA matrix and good compatibility between treated fibers and PLA matrix. Moreover, it can be observed that crazing propagation was hindered by fibers and transcrystalline developed along fibers by polarized optical microscope. Differential scanning calorimetry analysis was carried out to study the crystallinity of PLA and it was found that incorporation of fiber improved the crystallinity of PLA. The toughening mechanism of PLA/Flax composites was discussed according to the results. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42573.  相似文献   

2.
In this research, the mechanical, acoustical, thermal, morphological, and infrared spectral properties of untreated, heat and alkaline‐treated sisal fiber‐reinforced poly‐lactic‐acid bio‐composites were analyzed. The bio‐composite samples were fabricated using a hot press molding machine. The properties mentioned above were evaluated and compared with heat‐treated and alkaline‐treated sisal fibers. Composites with heat‐treated sisal fibers were found to exhibit the best mechanical properties. Thermo‐gravimetric analysis (TGA) was conducted to study the thermal degradation of the bio‐composite samples. It was discovered that the PLA‐sisal composites with optimal heat‐treated at 160°C and alkaline‐treated fibers possess good thermal stability as compared with untreated fiber. The results indicated that the composites prepared with 30wt % of sisal had the highest sound absorption as compared with other composites. Evidence of the successful reaction of sodium hydroxide and heat treatment of the sisal fibers was provided by the infrared spectrum and implied by decreased bands at certain wavenumbers. Observations based on scanning electron microscopy of the fracture surface of the composites showed the effect of alkaline and heat treatment on the fiber surface and improved fiber‐matrix adhesion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42470.  相似文献   

3.
A two‐step process was developed to prepare nanocrystalline cellulose (NCC) reinforced poly(lactic acid) (PLA) nanocomposites using polyethylene glycol (PEG) as a compatibilizer. It was composed of solvent mixing and melt blending. The NCC was well dispersed in the PLA matrix. A network was formed at high NCC‐to‐PEG ratio at which the amount of the PEG was not enough to cover all the surfaces of the NCC. The formation of the network was confirmed by the occurrence of a plateau for the storage modulus at low frequency. The incorporation of the PEG and NCC could improve the crystallinity of the PLA. The elongation at break increased from 11.0% for the neat PLA to 106.0% for the composites including 6 wt % NCC, impact strength was improved from 0.864 to 2.64 kJ m?2 and tensile strength did not change significantly for the same 6 wt % NCC composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44683.  相似文献   

4.
In order to develop an environmentally benign flame retardant for bamboo/PLA composites (BPC), chitosan (CS) and tannic acid (TA) were used as cationic and anionic polyelectrolyte respectively to stabilize halloysite nanotubes (HNT) on the surface of bamboo fiber (BF) and poly(lactic acid) (PLA). Mechanical performance tests showed that the flexural properties of BPC were moderately enhanced with the addition of HNT, while the incorporation of CS/TA complex (FR) exhibited a slight increase. The results of thermogravimetric analysis demonstrated that CS/TA complex and HNT improved the thermal stability of the BPC synergistically, which increased the char residue. Limiting oxygen index and cone calorimetry tests were used to study the flammability of BPC and the results showed that the addition of CS/TA complex and HNT had a synergistic effect on the flame retardant performance of BPC materials. The macroscopic and microscopic morphological studies confirmed the formation of HNT layer in the matrix of BPC/5FR@5HNT samples, which facilitated more stabile char residue with the best flame retardant performance.  相似文献   

5.
Fully bio‐based and biodegradable composites were compression molded from unidirectionally aligned sisal fiber bundles and a polylactide polymer matrix (PLLA). Caustic soda treatment was employed to modify the strength of sisal fibers and to improve fiber to matrix adhesion. Mechanical properties of PLLA/sisal fiber composites improved with caustic soda treatment: the mean flexural strength and modulus increased from 279 MPa and 19.4 GPa respectively to 286 MPa and 22 GPa at a fiber volume fraction of Vf = 0.6. The glass transition temperature decreased with increasing fiber content in composites reinforced with untreated sisal fibers due to interfacial friction. The damping at the caustic soda‐treated fibers‐PLLA interface was reduced due to the presence of transcrystalline morphology at the fiber to matrix interface. It was demonstrated that high strength, high modulus sisal‐PLLA composites can be produced with effective stress transfer at well‐bonded fiber to matrix interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40999.  相似文献   

6.
This investigation focuses on the preparation of bio‐based composites from recycled poly (ethylene terephthalate) (PET) and sisal fibers (3 cm, 15 wt %), via thermopressing process. Plasticizers derived from renewable raw materials are used, namely, glycerol, tributyl citrate (TBC) and castor oil (CO), to decrease the melting point of the recycled PET (Tm ∼ 265°C), which is sufficiently high to initiate the thermal decomposition of the lignocellulosic fiber. All used materials are characterized by thermogravimetric analysis and differential scanning calorimetry, and the composites are also characterized via dynamic mechanical thermal analysis. The storage modulus (30°C) and the tan δ peak values of CT [PET/sisal/TBC] indicate that TBC also acts as a compatibilizing agent at the interface fiber/PET, as well as a plasticizer. To compare different processing methods, rheometry/thermopressing and compression molding are used to prepare the recycled PET/sisal/glycerol/CO composites. These two different methods of processing show no significant influence on the thermal properties of these composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40386.  相似文献   

7.
In this study, the effects of the monotherpenic phenol concentration on the properties of biocomposites containing plasticized poly(lactic acid) (PLA) with acetyl tributyl citrate (ATBC) were investigated. The monotherpenic phenols carvacrol (C) and thymol (T) were added to PLA by a melt‐blending method. The prepared samples were characterized by means of tensile testing, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy (SEM), and antibacterial activity tests. The addition of ATBC to PLA resulted in hydrogen bonding between ATBC and PLA. We observed that ATBC, C, and T reduced the glass‐transition temperature of PLA. The presence of C and T decreased the maximum degradation temperature slightly. Because of the plasticization effect of the additives, the tensile strength and Young's modulus of PLA decreased, whereas the extent of elongation they experienced before failure increased. This effect was also observed with SEM analysis in terms of plastic deformation at break. The antibacterial activity tests showed that samples containing high concentrations of C demonstrated an improved antibacterial activity against Staphylococcus aureus, Salmonella typhimurium, and Listeria monocytogenes bacteria. We observed that C exhibited a higher inhibition against bacterial strains than T. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45895.  相似文献   

8.
Wood has limitations in strength because of its biostructural defects, including vessels. To overcome this limitation, composite materials can be innovated by breaking wood down into cellulose and lignin and reassembling them for bio‐originating strong structural materials. In this study, an ecofriendly resin was developed that was suitable for cellulose‐based composites. To overcome the low dimensional stability of lignin and to increase its interactions with cellulose, it was blended with poly(vinyl alcohol) (PVA). The PVA–lignin resin was characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, thermal analysis, mechanical tensile testing, and lap‐shear joint testing. The adhesion properties of the PVA–lignin resin increased with increasing PVA content. PVA played the role of synthetic polymer and that of linker between the cellulose and lignin, like hemicellulose does in wood. The PVA–lignin resin exhibited a high miscibility, mechanical toughness, and good adhesion properties for nanocellulose composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46655.  相似文献   

9.
Poly(lactic acid) (PLA)/kraft pulp fiber (30 wt%) composites were prepared with and without a coupling agent (epoxidized linseed oil, ELO, 1.5 wt%) by injection molding. The non-annealed composite samples, along with lean PLA, were exposed to two hydro-thermal conditions: cyclic 50% RH/90% RH at 23 and 50°C, both up to 42 days. The aging effects were observed by size exclusion chromatography, differential scanning calorimetry, dynamic and tensile mechanical analysis, and fracture surface imaging. ELO temporarily accelerated the material's internal transition from viscous to an increasingly elastic response during the aging at 50°C. ELO also slowed down the tensile strength reduction of the composites at 50°C. These observations were explained with the hydrophobic ELO molecules' coupling and plasticizing effects at fiber/matrix interfaces. No effects were observed at 23°C.  相似文献   

10.
The influence of lignocellulosic nanofibers (LCNF) additive on the inherent mechanical properties of submicron electrospun poly(vinyl alcohol) (PVA) fibers is reported. LCNF with a diameter of 25 ± 15 nm and a length of 220 ± 90 nm obtained from hemp shives were dispersed in aqueous PVA solutions to produce homogeneous nanocomposite fibers with 0, 5, and 10 w/w % LCNF loads in solid PVA. Tensile tests on mats show that LCNF additive causes up to sevenfold increase in stiffness and significant decrease in elongation at yield. AFM‐based 3‐point bending tests on single LCNF‐doped fibers reveal up to 11.4 GPa Young's modulus in the diameter range of 300 to 500 nm, indicating a 2.4 times increase compared to neat PVA fibers. Mechanical properties of both neat and LCNF‐doped PVA fibers are found to be strongly size‐dependent at lower fiber diameters, with Young's modulus values exceeding 100 GPa at below 100 nm diameters. The results can be explained by extensive restructuration of hydrogen bonding network due to the LCNF additive. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44361.  相似文献   

11.
Nanocellulose has received increasing attention in science and industry in recent years as a nanoscale material for the reinforcement of polymer matrix composites due to its superior mechanical properties, renewability, and biodegradability. New nanocellulose sources, modifications, and treatments are under development to reduce the high energy required during production and to create a more suitable industrial-scale production process. Thus, this paper reviews plant-based nanocellulose composites and their properties, with a focus on their thermal-related characteristics. The purpose of this review is to establish for readers the impact of the incorporation of nanocellulose on the thermal and dynamic mechanical properties of nanocellulose composites. Understanding of the thermal properties is important for researchers to assess the suitability of the nanocomposites for a variety of applications in response to new and evolving societal requirements. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48544.  相似文献   

12.
α-Cellulose extracted from jute fiber was grafted with oligo( d -lactic acid) (ODLA) via a graft polycondensation reaction in the presence of para-toluene sulfonic acid and potassium persulfate in toluene at 130 °C for 9 h under 380 mmHg. ODLA was synthesized by the ring-opening polymerization of d -lactides in the presence of stannous octoate (0.03 wt % lactide) and d -lactic acid at 140 °C for 10 h. Composites of poly( l -lactic acid) (PLLA) with the ODLA-grafted α-cellulose were prepared by the solution-mixing and film-casting methods. The grafting of ODLA onto α-cellulose was confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis of the composites was performed with FTIR spectroscopy, SEM, wide-angle X-ray diffraction, and thermogravimetric analysis. The distribution of the grafted α-cellulose in the composites was uniform and showed better compatibility with PLLA through intermolecular hydrogen bonding. Only homocrystalline structures of PLLA were present in the composites, and the thermal stability increased with increasing percentage of grafted α-cellulose. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47424.  相似文献   

13.
The thermal stability of poly(ethylene terephthalate) reinforced with 1, 5, 10, 15, and 20% hemp fibers was investigated with the aim of extending the applications of biocomposites to high‐melting thermoplastics. The material was injection‐molded following compounding with a torque‐based Rheomix at 240, 250, and 260°C. A combination of thermogravimetric methods at 5, 10, and 20°C/min, Liu and Yu's collecting temperature method, and Friedman's kinetic method were used for testing and analysis. A significant thermostability for all formulations was observed below 300°C; this demonstrated their potential for successful melt processing. Moreover, two degradation steps were observed in the temperature ranges 313–390 and 390–490°C. The associated apparent activation energies within the temperature ranges were determined as 150–262 and 182–242 kJ/mol, respectively. We found that the thermostability was significantly affected by the heating rates; however, the effect of the temperature of the mixing chamber was negligible. These findings suggest that the successful melt processing of high‐melting thermoplastics reinforced with natural fibers is possible with limited fiber thermodegradation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42500.  相似文献   

14.
Lignocellulosic sisal fiber (LSF) and sisal pulp (SP) were electrospun at room temperature from solutions in trifluoroacetic acid (TFA) prepared at concentrations of 2 × 10−2 g mL−1 and 3 × 10−2 g mL−1, respectively. Scanning electron microscopy images of the electrospun LSF showed fibers with diameters ranging from 120 to 510 nm. The presence of defects decreased along with increasing the flow rate of the SP solution, which generated nanofibers and ultrathin fibers with diameters in the range of 40–60 (at 5.5 µL min−1) up to 90–200 nm (at 65.5 µL min−1). Despite the known ability of TFA to esterify the hydroxyl groups present in the starting materials, the Fourier transform infrared spectra indicated the absence of trifluoroacetyl groups in the electrospun samples. The thermal stability of the final materials proved suitable for many applications even though some differences were observed relative to the starting materials. This study demonstrated a feasible novel approach for producing nano/ultrathin fibers from lignocellulosic biomass or its main component, which allows for a wide range of applications for these materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41826.  相似文献   

15.
This work aims to study the possibility to process PLA/PBS/RH green composites into hexagonal plant-pots employing a large-scale industrial operation using injection molding. Green composites based on poly(lactic acid) (PLA), poly(butylene succinate) (PBS), and rice husk (RH) with various RH contents (10–30%wt.) were produced successfully using a twin-screw extruder. The compatibility of RH-matrix was improved by chemical surface modifications using a coupling agent. RH was analyzed as an effective filler for PLA to develop green composites with low cost, high biodegradability, improved processability, and comparable mechanical properties as unfilled PLA. With increasing RH content, tensile modulus of the composites increased gradually. The addition of PBS, at PLA/PBS ratio of 60/40, improved the elongation at break and impact strength of PLARH30 by 55% and 7.1%, respectively. The suitable processing temperatures for PLA decreased from 220–230°C to 170–180°C when 30%wt. RH was composited into PLA matrix and were further reduced when PBS was applied. After biodegradation via either enzymatic degradation or hydrolysis, surface erosion with a large number of voids, mass loss, and the substantial decrease in tensile strength of all the composites were observed. In addition, the biodegradation of the composites has been improved by the addition of either RH or PBS.  相似文献   

16.
In this study, acrylated epoxidized flaxseed oil (AEFO) resin is synthesized from flaxseed oil, and flax fiber reinforced AEFO biocomposites is produced via a vacuum‐assisted resin transfer molding technique. Different amounts of flax fiber and styrene are added to the resin to improve its mechanical and physical properties. Both flax fiber and styrene improve the mechanical properties of these biocomposites, but the flexural strength decreases with an increase in styrene content. The mass increase during water absorption testing is less than 1.5% (w/w) for all of the AEFO‐based biocomposites. The density of the AEFO resin is 1.166 g/cm3, which increases to 1.191 g/cm3 when reinforced with 10% (w/w) flax fiber. The flax fiber reinforced AEFO‐based biocomposites have a maximum tensile strength of 31.4 ± 1.2 MPa and Young's modulus of 520 ± 31 MPa. These biocomposites also have a maximum flexural strength of 64.5 ± 2.3 MPa and a flexural modulus of 2.98 ± 0.12 GPa. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41807.  相似文献   

17.
Polylactic acid (PLA) biocomposites were produced by a combination of extrusion and injection molding with three cellulosic reinforcements (agave, coir, and pine) and contents (10, 20, and 30%). In particular, some samples were subjected to thermal annealing (105 °C for 1 h) to modify the crystallinity of the materials. In all cases, morphological (scanning electron microscopy) and thermal (differential scanning calorimetry, dynamical mechanical thermal analysis) characterizations were related to the mechanical properties (Charpy impact, tensile and flexural tests). The results showed that annealing increased the crystallinity for all the materials produced, but different mechanical behaviors were observed depending on fiber type and content. For example, annealing increased the impact strength and flexural modulus of PLA and PLA biocomposites (agave, coir, and pine), while decreasing their flexural strength. But the main conclusion is that fiber addition combined with thermal annealing can substantially increase the thermal stability of the studied materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43750.  相似文献   

18.
The objectives of this study were to prepare injection‐moulded wood‐based plastics and to characterize their mechanical properties. Injection‐moulded wood‐based plastics with satisfactory flexural (65.7 MPa) and tensile strengths (30.1 MPa) were successfully obtained through a simple reaction of mulberry branch meal with phthalic anhydride (PA) in 1‐methylimidazole under mild condition. The X‐ ray diffraction results indicated complete disruption of the crystallinity of cellulose because the pattern obtained for esterified fiber was almost a straight line without any peaks. The peaks in the Fourier transform infrared spectroscopy spectra (1738 and 748 cm?1) and NMR spectra (173.3 and 133.5 ppm) indicated the attachment of 0‐carboxybenzoyl groups onto the wood fibers via ester bonds. The differential scanning calorimetry curves showed that the glass transition temperature decreased with increasing weight percentage gain (WPG). The derivative thermogravimetric analysis curves indicated that esterified wood fiber was less thermally stable than the untreated fiber and that the component tends to be homogeneous with increasing WPG. Scanning electron microscope revealed that the fractured surfaces of most samples were smooth and uniform but that high temperature and less PA dosage could lead to the appearance of holes and cracks. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41376.  相似文献   

19.
Thermoplasticized starch (TPS) filled poly(lactic acid) (PLA) blends are usually found to have low mechanical properties due to poor properties of TPS and inadequate adhesion between the TPS and PLA. The purpose of this study was to investigate the reinforcing effect of wood fibers (WF) on the mechanical properties of TPS/PLA blends. In order to improve the compatibility of wood with TPS/PLA blends, maleic anhydride grafted PLA (MA‐g‐PLA) copolymer was synthesized and used. TPS, TPS/PLA blends, and WF reinforced TPS/PLA composites were prepared by twin‐screw extrusion and injection molded. Scanning electron microscope and crystallinity studies indicated thermoplasticity in starch. WF at two different weight proportions, that is, 20% and 40% with respect to TPS content were taken and MA‐g‐PLA at 10% to the total weight was chosen to study the effect on mechanical properties. At 20% WF and 10% MA‐g‐PLA, the tensile strength exhibited 86% improvement and flexural strength exhibited about 106% improvement over TPS/PLA blends. Increasing WF content to 40% further enhanced tensile strength by 128% and flexural strength by 180% with respect to TPS/PLA blends. Thermal behavior of blends and composites was analyzed using dynamic mechanical analysis and thermogravimetric analysis. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46118.  相似文献   

20.
A lignosulfonate/chitosan‐based medium density fiberboard (MDF) adhesive has been prepared using glutaraldehyde as crosslinking agent. Optimization of glutaraldehyde/chitosan mass ratio was carried out based on characterization details involving MDFs’ mechanical and dimensional performances analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X‐ray diffraction. The addition of glutaraldehyde improved the mechanical properties of the MDF significantly, while it negatively affected the dimensional properties. The MDFs using lignosulfonate/chitosan‐glutaraldehyde adhesives (LS/CS‐Glu) with glutaraldehyde/chitosan mass ratios in the range of 0.25–0.75 fulfilled the Chinese national standard for MDF. Chitosan was crosslinked with self‐polymerized glutaraldehyde through C?N linkages which resulted in the reduction of the amide bonds and hydrogen bonds between chitosan and lignosulfonate. The proposed LS/CS‐Glu adhesives can be a promising candidate for traditional MDF adhesives which contain formaldehyde. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45870.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号