首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoplastic polyurethane elastomers (TPUs) are prepared including different amounts of rosin in their composition. Rosin is used either as an additive, mixed in the TPU solutions, or as a reactant in the chain‐extension step of polymer synthesis. The properties of the materials are studied using solution viscosity measurements, size‐exclusion chromatography, stress‐controlled rheometry, differential scanning calorimetry, wide‐angle X‐ray diffraction, and contact angle determinations. Rosin as an additive does not markedly change the polymer properties. On the contrary, the use of rosin in the chain‐extension step leads to sharp increases of viscosity and molar mass as well as improvements of rheological properties and changes in morphology: the crystalline regions are more affected (variations in the softening temperature and enthalpy) than the amorphous ones (quite constant glass‐transition temperature). The conclusion is that rosin acts as an actual chain extender and that it modifies the organization of both the hard and the soft segments of the polymers. Furthermore, the TPUs are used as raw materials of solvent‐based adhesives, which adhesion properties are characterized by T‐peel tests of PVC/TPU adhesive joints. Rosin as an additive cannot improve the low tack (initial adhesive strength) of TPU, although as a chain extender or cochain extender (together with butane diol) rosin allows development of significant initial adhesive strengths, while keeping a high level of actual (maximal) adhesive strength. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3402–3408, 2001  相似文献   

2.
Isosorbide, a renewable diol derived from starch, was used alone or in combination with butane diol (BD) as the chain extender in two series of thermoplastic polyurethanes (TPU) with 50 and 70% polytetramethylene ether glycol (PTMEG) soft segment concentration (SSC), respectively. In the synthesized TPUs, the hard segment composition was systematically varied in both series following BD/isosorbide molar ratios of 100 : 0; 75 : 25; 50 : 50; 25 : 75, and 0 : 100 to examine in detail the effect of chain extenders on properties of segmented polyurethane elastomers with different morphologies. We found that polyurethanes with 50% SSC were hard elastomers with Shore D hardness of around 50, which is consistent with assumed co‐continuous morphology. Polymers with 70% SSC displayed lower Shore A hardness of 74–79 (Shore D around 25) as a result of globular hard domains dispersed in the soft matrix. Insertion of isosorbide increased rigidity, melting point and glass transition temperature of hard segments and tensile strength of elastomers with 50% SSC. These effects were weaker or non‐existent in 70% SSC series due to the short hard segments and low content of isosorbide. We also found that the thermal stability was lowered by increasing isosorbide content in both series. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42830.  相似文献   

3.
We investigated thermal and mechanical properties of thermoplastic polyurethanes (TPUs) with the soft segment comprising of both polyisobutylene (PIB) and poly(tetramethylene)oxide (PTMO) diols. Thermal analysis reveals that the hard segment in all the TPUs investigated is completely amorphous. Significant mixing between the hard and soft segments was also observed. By adjusting the ratio between the hard and soft segments, the mechanical properties of these TPUs were tuned over a wide range, which are comparable to conventional polyether‐based TPUs. Constant stress creep and cyclic stress hysteresis analysis suggested a strong dependence of permanent deformation on hard segment content. The melt viscosity correlation with shear rate and shear stress follows a typical non‐Newtonian behavior, showing decrease in shear viscosity with increase in shear rate. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 891‐897, 2013  相似文献   

4.
The effect of aeration rate on pullulan production and the rheological properties of the fermentation broth in an airlift reactor was investigated. An airlift fermenter was shown to be an appropriate fermentation system for the production of pullulan. A maximum pullulan concentration (30 kg m?3), biomass concentration (6.0 kg m?3), pullulan yield (60%, w/w) and sugar utilization (100%, w/w) was obtained at an aeration rate of 2 vvm. The mycelium and the yeast‐like cells were the morphological forms responsible for pullulan production. The highest polysaccharide concentration was obtained when the mycelial forms and the yeast‐like cells were 60% and 40% (w/w) of the total biomass, respectively. The apparent viscosity of the broth was increased with the increase of the aeration rate from 1 to 2 vvm and then decreased at higher vvms. On the other hand, the dissolved oxygen concentration and the volumetric mass transfer coefficient continually increased with the increase of the aeration rate. The mycelial forms and the production of extracellular polysaccharide were responsible for the non‐Newtonian flow behaviour of the fermentation broth. The rheological behaviour can be characterized by a power law type of equation. The relationship between shear rate/shear stress and shear rate/apparent viscosity showed a non‐Newtonian behaviour of the fermentation broth. © 2001 Society of Chemical Industry  相似文献   

5.
Copolymers of acrylamide, 2‐acrylamide‐2‐methylpropanesulfate (AMPS), and hydrophobic monomer N‐arylalkylacrylamide (BAAM) were synthesized by free‐radical micellar copolymerization. The effects of the copolymer, BAAM, AMPS, and NaCl concentrations and the pH value on the apparent viscosity of the copolymers were studied. The solution viscosities increased sharply when the copolymer concentration was higher than the critical associating concentration. The apparent viscosities of aqueous solutions of poly(N‐arylalkylacrylamide‐co‐acrylamide‐co‐2‐acrylamide‐2‐methylpropanesulfate) (PBAMS) increased with increasing BAAM and AMPS concentrations. PBAMS exhibited good salt resistance. With increasing pH, the apparent viscosities first increased and then decreased. Dilute PBAMS solutions exhibited Newtonian behavior, whereas semidilute aqueous and salt solutions exhibited shear‐thickening behavior at a lower shear rate and pseudoplastic behavior at a higher rate. Upon the removal of shear, the aqueous solution viscosities recovered and became even greater than the original viscosity, but the salt solution viscosities could not recover instantaneously. The elastic properties of PBAMS solutions were more dominant than the viscous properties, and this suggested a significant buildup of a network structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 316–321, 2005  相似文献   

6.
PP/EPDM-g-MAH/TPU共混物流变行为的研究   总被引:8,自引:0,他引:8  
以EPDM g MAH为增容剂 ,采用熔融共混技术制备了热塑性聚氨酯弹性体 (TPU)增韧聚丙烯 (PP)材料 ,研究了PP/EPDM g MAH/TPU共混物的流变行为 ,重点讨论了增容剂EPDM g MAH对共混物流变行为的影响。结果表明 :共混物熔体的非牛顿指数n <1,且随EPDM g MAH用量的增加而减小 ,表观粘度随剪切速率和剪切应力的增大而降低 ,熔体符合假塑性流体的流动规律 ;温度升高 ,表观粘度降低 ;随着EPDM g MAH用量的增加 ,共混物的表观粘度升高 ,粘流活化能有所减小  相似文献   

7.
Five series of block copolymers based on natural rubber and polyurethane were prepared from hydroxyl terminated liquid natural rubber (HTNR) and polyurethane (PU) formed by the reaction of diphenyl methane—4,4′—diisocyanate (MDI) with a chain extender diol, viz., ethylene glycol (EG)/propylene glycol (PG)/1,4‐butane diol (1,4‐BDO)/1,3‐butane diol (1,3‐BDO)/bisphenol A (BPA), by solution polymerization. Structural characterization of the block copolymers was done by infrared (IR) analysis. Thermal studies and kinetic analysis on thermal degradation of the block copolymers were undertaken with the view of characterizing them. Energy of activation and entropy change for the degradation were determined and a probable mechanism for the solid state degradation was suggested which corresponds to a three dimensional diffusion mechanism. DSC analysis has been used for the study of microphase separation in the block copolymers. Thermal transition of the hard segment significantly varies with the extender diol which highlights the effect of extender diol structure on the chain stiffening mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
A falling coaxial cylinder viscometer was used to measure the melt flow behaviour of a commercial polystyrene with Mw 260,000. The shear stress region extended down to 0.6 × 104 dynes/cm2 and shear rates were as low as 3 × 10?2 sec?1 at 186°C. The shear rate-shear stress plots were linear at low shear stresses with slopes (differential viscosities) of 3.3 × 105 poises at total shear less than 120 units and decreasing differential viscosity with higher total shear. The flow curves at relatively low total shear were initially dilatant and became pseudoplastic with increasing shear stress. The inflection point represents a Newtonian apparent viscosity, which agrees fairly well with literature values for polystyrenes of the same Mw. Newtonian apparent viscosity is characteristic of a point value of shear stress and shear rate and is not necessarily a plateau region. Observation of a Newtonian region with decreasing shear stress or shear rate does not prove that this flow regime persists unchanged to zero values of the experimental parameter. The existence and magnitude of the Newtonian apparent viscosity reflects shear history of the polymer as well as its constitution and molecular weight distribution.  相似文献   

9.
Biodegradable lactic acid based poly(ester‐urethanes) (PEU) were polymerized and their structure and rheological properties were characterized. The polymerization process comprised two steps: lactic acid monomer was oligomerized to low molecular weight prepolymer, and this was then linked to high molecular weight PEU with chain extender, 1,6‐hexamethylene diisocyanate. The properties of PEU were modified by varying the amount of chain extender from 1.05:1 to 1.35:1 (NCO/OH ratio). The modification was mostly seen in the molecular weight distribution of the polymers, which was broadened from 2.2 to 3.5 as the amount of chain extender was increased. The telechelicity of the prepolymer was found to play an essential role in successful linking of the prepolymer units. In addition, the rheological properties of poly(ester‐urethane) were determined with capillary and dynamic rheometers. All PEU samples were pseudoplastic and broadening of their molecular weight distribution was accompanied by increased viscosity and complex viscosity at low shear rates and increased shear thinning. The temperature dependency of the measurement was pronounced. Rheological measurements also showed that PEU starts to degrade at 100°C and further rise in temperature increases the rate of degradation significantly.  相似文献   

10.
Amphiphilic β‐cyclodextrin‐based azo aromatic poly(ether urethane)s with different soft segment lengths have been synthesized and characterized. Hydrogen bonding in these systems was demonstrated by Fourier transform infrared spectroscopy analysis (carbonyl stretching region). A rheological study was performed on solutions of the synthesized poly(ether urethane)s in N,N‐dimethylformamide at various concentrations and temperatures by employing parallel plate geometry, and a comparative evaluation of the influence of the structural components on the viscometric responses was performed. The rheological behaviour was found to be strongly dependent on the chemical composition of the synthesized polyurethanes which promotes self‐assembly and structuring in solution. Hard segment content and polymer concentration influence pseudoplastic shear‐thinning flow behaviour. The rheology can be interpreted in terms of hydrophobic associations and chain entanglements and a hydrogen bonding network occurring in solution. The start‐up flow of the polymer solutions is determined by the lifetime of the associative polymer segments. Shear stress plateaux indicative of ‘shear banding’ behaviour explained by the structuring of the polymer solutions at increased temperatures were obtained. The studied amphiphilic polyurethane solutions are thermoresponsive systems exhibiting viscosity increase with increasing temperature contrary to the usual Arrhenius thermo‐thinning behaviour. At constant shear rate viscosity was found to increase with increasing temperature due to thermo‐association. © 2014 Society of Chemical Industry  相似文献   

11.
In this study, the shear flow properties of Poly(p‐phenylene benzobisoxazole) (PBO)/poly(phosphoric acid) (PPA) spinning dope were studied by means of capillary rheometer. The effect of shear stress, temperature, PBO concentration, and PBO molecular weight on the apparent viscosity of PBO/PPA dope was discussed. The results showed that the apparent viscosity of the dope decreased with the increase of the shear stress and the temperature. The flow behavior index increased with the increase of temperature, which indicated that the non‐Newtonian behavior of the dope became weaker at high temperature. Moreover, it was also found that at high shear stress, the apparent viscosity of the dope was insensitive to the temperature, PBO molecular weight, and PBO concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The rheological behaviors of semi‐aromatic transparent polyamide (SATPA) melt are investigated using a capillary rheometer. The effects of shear rate, shear stress, and temperature on the apparent viscosity ηa of SATPA are discussed. A correlation of non‐Newtonian index with temperature is obtained. The results show the shear thinning of SATPA; meanwhile ηa decreases with increasing temperature and shear rate, and the viscous flow activation energy is further obtained from temperature dependence of the samples. It was concluded that the apparent viscosity ηa is sensitive to temperature at lower shear rate owing to the higher viscous flow activation energy; on the contrary, the influence of temperature effect on the apparent viscosity becomes minor at higher shear rate due to the lower viscous flow activation energy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1586–1589, 2005  相似文献   

13.
Here we demonstrate that inkjet printing technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. PVOH water‐based inks were formulated with the addition of additives such as humectant and pigments. The intrinsic properties of the inks, such as surface tension, rheological behavior, pH, wetting, and time stability were investigated. The ink's surface tension was in the range 30–40 mN/m. All formulated inks displayed a pseudoplastic (non‐Newtonian shear thinning and thixotropic) behavior at low‐shear rates and a Newtonian behavior at high‐shear rates; were neutral solutions (pH7) and demonstrated a good time stability. A proprietary 3D inkjet printing system was utilized to print polymer multilayer structures. The morphology, surface profile, and the thickness uniformity of inkjet printed multilayers were evaluated by optical microscopy and FT‐IR microscopy. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43572.  相似文献   

14.
Energy dissipation rates of water and glycerol as Newtonian fluids and carboxyl methyl carbonate solution as non‐Newtonian fluid in a stirred vessel are investigated by 2D particle image velocimetry and compared. Mean velocity profiles reflect the Reynolds (Re) number similarity of two flow fields with different rheological properties, but the root mean square velocity profiles differ in rheology at the same Re‐number. Energy dissipation rates are estimated by direct calculation of fluctuating velocity gradients. The varying energy dissipation rates of Newtonian and non‐Newtonian fluids result from the difference in fluid rheology and apparent viscosity distribution which decides largely the flow pattern, circulation intensity, and rate of turbulence generation.  相似文献   

15.
The effects of the molecular aggregation structure on the rheological properties of thermoplastic polyurethane (TPU) were investigated. The TPU was composed of poly{(tetramethylene adipate)-co-(hexamethylene adipate)} glycol as the soft segments, 4,4′-diphenylmethane diisocyanate and 1,4-butanediol as the hard segments. The TPU sheets prepared by injection molding were annealed at various temperatures from 23 to 120 °C to vary the molecular aggregation structure. Glass transition temperature of the soft segment and melting points of the hard segment domains of the TPUs decreased and increased, respectively, with increasing annealing temperature. The results of DSC, solid-state NMR spectroscopy and dynamic viscoelastic measurements revealed that the degree of micro-phase separation of the TPUs becomes stronger with increasing annealing temperature due to the progress of formation of well-organized hard segment domains. The dynamic temperature sweep experiments for molten TPUs revealed that the temperature at critical gel point, which is defined as the temperature at which the dynamic storage modulus coincides with the loss storage modulus, in the cooling process increased with the progress of aggregation of the hard segments in the TPUs observed in the solid state. The uniaxial elongational viscosity measurements showed that TPUs exhibited an obvious strain hardening behavior with strain rate owing to residual hard segment domains at an operating temperature. It was revealed that the formation of well-organized hard segment domains had a profound effect on the rheological properties of TPUs, in particular on their elongational viscosity.  相似文献   

16.
PA1010/MGEPR共混物的流变性能研究   总被引:2,自引:0,他引:2  
以尼龙1010(PA1010)为基体,以马来酸酐接枝乙丙橡胶(MGEPR)为增韧剂,采用Brabender PLE331型塑化仪制备了PA1010/MGEPR共混增韧尼龙材料,测试了PA1010/MGEPR共混物的表观粘度、非牛顿指数和粘液活化能等流变能数,并重点讨论了其流变性能。实验结果表明:共混物的表观粘度随温度升高而降低;粘流活化能随剪切速率的增而而减小。共混物熔体的表观粘度随剪切速率和剪切应力的增大而降低,非牛顿指数n小于1,符合假塑性流体流动规律。  相似文献   

17.
N‐cyclohexylmaleimide (ChMI) and styrene (St) were polymerized with methyl methacrylate (MMA) at different St feed content by suspension polymerization method. The glass transition temperatures (Tg) of the terpolymers were detected by torsional braid analysis (TBA). Two transition peaks in TBA curves of the terpolymers with a high St content illustrated that these terpolymers have a heterogeneous chain structure and the phase separation occurred. The lower transition temperature, Tg1, was assigned to the random St‐MMA components, and the higher transition temperature, Tg2, was assigned to the St‐ChMI units‐rich segments. Thermogravimetric analyses (TGA) revealed that all the terpolymers showed a two‐step degradation process. The tensile strength of the terpolymers decrease with increasing St content while the impact strength tended to increase slightly. The rheological behavior of the terpolymers was also detected. The result illustrated that the terpolymers showed rheological behavior similar to that of pseudoplastic liquid. The apparent shear viscosity decreased with the increasing of St content. All terpolymers have a higher value of flow n than the poly(MMA‐co‐ChMI). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 918–922, 2006  相似文献   

18.
The rheological properties of a semi‐dilute ultra‐high molecular weight polyethylene (UHMw‐PE)/paraffin wax solution were investigated by mainly focusing on the influence of its concentration on the shear flow viscosity. It was found that the UHMw‐PE solution exhibits a shear‐thinning behavior at a very wide shear rate range from 10?4 to higher than 103 sec?1. Furthermore, this typical non‐Newtonian behavior was more obvious with a concentration increase. From the concentration dependence of the zero‐shear creep compliance or other rheological factor, it was found that the extremely large Me value of the system gives rise to various kinds of non‐Newtonian behaviors, especially those highly elastic in nature. Finally, the origin of the abnormal stress fluctuation during the steady shear measurement was found to be related to the shear‐induced structural development of the solution.  相似文献   

19.
Flow characteristics of seven commercially available one-component epoxy adhesive pastes were measured using a controlled shear stress rheometer and a controlled shear rate rheometer over a temperature range from 5°C to 60°C. Combining data obtained from both controlled rate and controlled stress experiments over a wide range of shear rates, we observed Newtonian flow (shear stress proportional to shear rate) at very low shear rates, a plateau “shear thinning” region at intermediate shear rates, and a second region of linear dependence of shear stress on shear rate at high shear rates. The adhesive pastes exhibited a very broad range of rheological behavior. Two flow parameters important to adhesive application technology, the plastic viscosity and the apparent yield stress, were measured for each adhesive. The plastic viscosity ranged from 11.6 to 329.5 Pa. s; the apparent yield stress ranged from 56.2 to 413 Pa. The temperature dependence of the rheological parameters of the epoxy adhesive pastes was also determined. The results are reported as the activation energies, Eη and Eσ , of plastic viscosity and apparent yield stress, respectively. The apparent yield stress of each adhesive paste was much less sensitive to changes in temperature than was the plastic viscosity. This suggests that the processing characteristics are likely to show qualitative as well as quantitative changes with temperature.  相似文献   

20.
An organo‐modified Boehmite (o‐Boehmite) was used to prepare nanocomposite UV‐curing coatings, based on a cycloaliphatic epoxy resin (3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate). A hyperbranched polymer (HBP) based on highly branched polyester, was also added to the resin, with the aim to modify its reactivity, such as a possible route to increase the toughness of the resin. Different amounts of the nanofiller and the HBP, ranging from 5 up to 20 wt % of resin, were dispersed into the resin in the presence of triarylsulfonium hexafluoroantimonate, as a photoinitiator for the UV curing of the resin. The rheological behavior of the formulations produced was studied as function of the shear rate and of the content of each filler using a cone and plate rheometer. A general increase in viscosity was observed with increasing the volume fraction of each filler and a moderate pseudoplastic behavior was observed when o‐Boehmite filler was added. A non‐Newtonian behavior was observed with the incorporation of the HBP. The viscosity of the epoxy/boehmite resin mixtures was analyzed as function of the nanofiller volume fraction. In the case of epoxy/hyperbranched resin mixtures, the Cross equation was used to predict the viscosity of each formulation as a function of the shear rate and an appropriate relationship to predict the viscosity of each formulation as a function of the filler volume fraction, was determined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号