首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of extraction solvent and conditions on the total phenolic content (TPC) and antioxidant activity of black beans, canola and foxtail millet were investigated. The antioxidant activity was assayed using 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging activity (DRSA) and oxygen radical absorbance capacity (ORAC). Four solvent systems, namely 70 % acetone, 80 % ethanol, 80 % methanol and a mixture of acetone/methanol/water (7:7:6, v/v/v) were used. The extraction methods adopted in this study included refluxing, homogenization, cold extraction and sonication. The TPC as measured using the Folin Ciocalteu's method were 12.35–28.39, 2.43–16.73, and 1.78–5.06 µmol catechin equivalents/g dry matter (dm) for canola, black beans and foxtail millet, respectively. Aqueous acetone afforded the highest TPC for black beans and canola. Within the same solvent system used, the TPC, DRSA and ORAC obtained from different extraction techniques differed for black beans, canola and foxtail millet. The results demonstrated that the solvent system as well as method influenced the extraction of phenolic compounds and their antioxidant activities, depending on the type of matrix in which phenolics were embedded.  相似文献   

2.
Optimal conditions for extraction of tannins and other phenolics from tree foliage and their subsequent storage rarely have been investigated. We investigated methods of drying leaves, optimal solvents, and the effects of light and temperature on the extractability and stability of condensed tannins (proanthocyanidins) and total phenolics from leaves ofEucalyptus trees. Aqueous acetone was a better solvent than aqueous methanol for condensed tannins and total phenolics, but condensed tannins were less stable in aqueous acetone than aqueous methanol. Stability of condensed tannins also was decreased substantially by room temperature versus 4°C and by exposure to indirect sunlight, although the assay for total phenolics was unaffected. For quantitative estimation of condensed tannins, extraction with 50% acetone was better than methods of direct analysis of leaf tissue. The highest estimates of total condensed tannins were obtained by exhaustive extraction with 50% acetone followed by direct analysis of the residue. Lyophilization of fresh leaf increased yield of condensed tannin (although usually by less than 10%). Lyophilization and subsequent storage of extracts had little effect on assays for condensed tannins or total phenolics.  相似文献   

3.
Pumpkin seed oil has become a recognized source of phenolic compounds. The main aim of this paper was to evaluate the concentration of phenolic compounds and their extraction from pumpkin seed oil. The total phenolics content (TPC) measured in the pumpkin seed oil samples ranged from 24.71 to 50.93 mg GAE/kg of oil. The individual phenolics were tyrosol, vanillic acid, vanillin, luteolin and sinapic acid. Hexane and acetone were the best solvents for the washing step, and methanol for the elution of the phenolics in the solid‐phase extraction (diol‐SPE), whereas bleaching caused a significant increase in the TPC obtained (24.5–30.7%). Additionally, some other oil characteristics were evaluated. The mean oxidative stability of the oils (OSI) was around 4 h, with 5.43 h for the most stable oil. The maximum antioxidant capacity measured by the reduction of the DPPH radical was 62%, which was comparable to 0.16 mM Trolox equivalent. The color of the oil was expressed by L*a*b* coefficients and its hue and saturation. Whereas all samples had similar lightness, their rates of green, red, yellow and blue color were different. Moreover, TPC correlated negatively with lightness, b* and saturation (–0.49, –0.48, and –0.43), and positively with a* and hue (0.58 and 0.52).  相似文献   

4.
This study is designed to develop ultrasonic conditions as an advanced technique for optimal recovery of phenolics and antioxidants from Eucalyptus robusta leaf and to evaluate the impact of solvents, temperature, sonication time and power on ultrasound-assisted extraction of these compounds. Temperature has the greatest impact on the total phenolic content (TPC) yield followed by time and power. A yield of 163.68 ± 2.13 mg GAE/g of TPC is observed using 250 W ultrasonic power for 90 min at 60°C with water. This study validates UAE as an efficient, green, and sustainable technique for extracting phenolics from E. robusta.  相似文献   

5.
The effect of various water‐miscible organic solvents (ethanol, methanol, acetone, acetonitrile, N,N‐dimethylformamide (DMF) and dimethylsulfoxide (DMSO)) on the kinetics of 4‐tert‐butylcatechol (tBC) oxidation in the presence of different samples of organic solvent‐resistant tyrosinase (OSRT) has been studied. In contrast to mushroom tyrosinase the enzyme shows a high relative stability in solutions of organic solvents and increased activity toward the bulky and hydrophobic substrate, tBC, in respect to catechol. Rates of the studied OSRT‐catalyzed reactions are however reduced by the presence of organic solvents and for all studied samples of OSRT decrease exponentially with the content of an organic solvent. The effect has been satisfactorily described by the effect of organic solvents on the thermodynamic activity of tBC. The correlation of the inhibition parameters with the hydrophobicity of a particular solvent (log P), its intrinsic molar volume, Vi, and the Dimroth–Reichardt parameter, ET(30), are shown. The results allow also the prediction of OSRT activity in aqueous solutions of water‐miscible organic solvents. Copyright © 2003 Society of Chemical Industry  相似文献   

6.
De-oiled canola meals are sources of protein-containing flavor-active phenolic compounds. Conventional canola oil processing utilizes an excess amount of solvents and is associated with the release of high-intensity bitter flavor-active phenolic compounds, limiting the use of the canola meal. Recent advances in the extraction and isolation of the bitter favor-active phenolic compounds from canola by-products produce protein isolates, however, would benefit the industry by producing a side-stream ingredient rich in phenolics. High temperature and pressure-aided processing, namely the accelerated solvent extraction (ASE) was investigated to extract the flavor-active bitter molecules from the canola meal. The extractability of flavor-active phenolic compounds including the major sinapates, kaempferol derivatives, and other thermo-generative compounds including thomasidioc acid (TA) was evaluated. The effects of temperature, solvent extractant and concentration, and the particle size of the meal were examined on the extraction efficiency of these phenolic compounds. Extraction temperature (180°C) was the primary determinant (p < 0.05) for the attenuation of major sinapates including sinapine and sinapic acid. Both ethanol and methanol extractants at a concentration of 70% (v/v) significantly (p < 0.05) extracted the flavor-active phenolic compounds. The pressurized high temperature through optimized ASE conditions attenuated the bitter undesirable flavor-active phenolic molecules from canola meal, thereby facilitating a potential value-added phenolic-rich by-product.  相似文献   

7.
Extracts from the hull of pigmented rice were prepared using a mixture of methanol–water (1:1, 2:1, and 3:1, v/v) for different extraction times (0–180 min). Total phenolic content (TPC) of the extracts increased with increasing concentration of methanol and extraction time (P < 0.05). A positive correlation between TPC and antioxidant activities, i.e., DPPH and ABTS radical scavenging activities and reducing power, was observed. The extracts prepared using methanol–water at the ratio of 3:1 for 180 min at 50 °C, referred as rice hull phenolic extract (RHPE), showed the highest TPC and free radical scavenging abilities and reducing power (P < 0.05). When the effects of RHPE on physicochemical stability of the emulsions stabilized by different emulsifiers, i.e., Tween 20 and bovine serum albumin (BSA), were examined, the collapse of emulsion was retarded when RHPE was applied in BSA‐based emulsions, whereas a negative effect was noticeable in Tween 20‐based counterpart. Lower oxidative degree was found for BSA stabilized emulsions, compared to Tween 20 containing system. RHPE (1–3 %) markedly improved the oxidative stability, particularly for BSA stabilized emulsions. Therefore, RHPE could be employed along with the selected protein to increase physicochemical stability of emulsion.  相似文献   

8.
Response surface methodology (RSM) was used to evaluate the quantitative effects of two independent variables: solvent polarity and temperature of the extraction process on the antioxidant capacity (AC) and total phenolics content (TPC) in meal rapeseed extracts. The mean AC and TPC results for meal ranged between 1181–9974 µmol TE/100 g and 73.8–814 mg sinapic acid/100 g of meal. The experimental results of AC and TPC were close to the predicted values calculated from the polynomial response surface models equations (R2 = 0.9758 and 0.9603, respectively). The effect of solvent polarity on AC and TPC in the examined extracts was about 3.6 and 2.6 times greater, respectively, than the effect of processing temperature. The predicted optimum solvent polarity of ε = 78.3 and 63.8, and temperature of 89.4 and 74.2°C resulted in an AC of 10 014 µmol TE/100 g and TPC of 863 mg SAE/100 g meal, respectively. The phenolic profile of rapeseed meal was determined by an HPLC method. The main phenolics in rapeseed meal were sinapine and sinapic acid. Refined rapeseed oils were fortified with an extract – rich in polyphenols – obtained from rapeseed meal. The supplemented rapeseed oil had higher AC and TPC than the refined oil without addition of meal extracts. However, AC and TPC in the enriched oils decreased during storage. The TPC in the studied meal extracts and rapeseed oils correlated significantly (p<0.0000001) positively with their AC (R2 = 0.9387). Practical applications: Many bioactive compounds extracted from rapeseed meal provide health benefits and have antioxidative properties. Therefore, it seems worth to consider the application of antioxidants extracted from the rapeseed meal for the production of rapeseed oils with potent AC. Moreover, antioxidants extracted from the rapeseed meal were added to refined rapeseed oil in order to enhance its AC. AC was then tested by FRAP assay. FRAP method is based on the reduction of the ferric tripyridyltriazine (Fe3+‐TPTZ) complex to the ferrous tripyridyltriazine (Fe2+‐TPTZ), and it is simple, fast, low cost, and robust method. FRAP method does not require specialized equipment and can be performed using automated, semi‐automatic, or manual methods. Therefore the proposed FRAP method can be employed by the fat industry laboratories to asses the AC of rapeseed oils and meal.  相似文献   

9.
Poly(allylamine) (PAlAm) gel was prepared by γ‐ray irradiation. Swelling behavior of the charged PAlAm gels having Cl? and NO3? counter‐ions (PAlAmHCl and PAlAmHNO3, respectively) was investigated in aqueous organic solvent mixtures as functions of solvent species (dimethylsulfoxide (DMSO), methanol (MeOH), ethanol (EtOH), 2‐propanol (2PrOH), tert‐butanol (tert‐BuOH), acetone, tetrahydrofuran (THF) and dioxane) and the concentration. With increasing solvent concentration, the gels (except for the DMSO system) showed a sharp deswelling comparable to the volume phase transition. The solvent specificity for the PAlAmHNO3 gel transition was correlated with the dielectric constant of the organic solvents, while that for the PAlAmHCl gel suggested that solvency for the counter anion is another important factor. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Free phenolic (FP), conjugated phenolic (CP), and insoluble-bound phenolic (IBP) acids were extracted from the seeds of seven species of oil-tea camellia and their antioxidant activities were evaluated. The results indicated that Camellia vietnamensis has the highest total phenolic content (TPC) (31.84 ± 0.11 g of gallic acid equivalent [GAE] kg−1) and that Camellia polyodontia has the lowest TPC (12.34 ± 0.22 g GAE kg−1) in the kernel. The average TPC among the species is similar in both the kernels and in the shells, and the content order of the three forms of phenolic compounds is FP > IBP > CP. HPLC-MS analysis showed the presence of 9–11 phenolic compounds in the FP, CP, or IBP extracts of the seven species of oil-tea camellia seed. Among the phenolics identified, ferulic acid, catechin, and epicatechin were the major contributors of antioxidant activity. Hierarchical cluster analysis conducted based on the phenolic properties showed that C. vietnamensis and Camellia semiserrata belong to the group characterized by high antioxidant capacities (FRAP, ferric-ion-reducing antioxidant power; ABTS assay), and Camellia chekiangoleosa and Camellia oleifera are arranged in a group with moderate phenolic properties. The other species constitute the third cluster with low phenolic content and antioxidant activity. The study demonstrated that oil-tea camellia seed contains significant amounts of phenolic acids. In addition, extracts from various parts of the seed could be interesting novel sources of natural antioxidants.  相似文献   

11.
Y. Bao  H. Yan  L. Liu  Q. Xu 《化学工程与技术》2010,33(10):1665-1671
Extraction of lycopene from Rhodopseudomonas palustris with various solvents and alkaline wash was investigated. Dichloromethane or benzene as single polar or nonpolar solvent were the most effective solvents. The maximum extraction efficiency was achieved with a combination of n‐hexane and methanol (1:1 v/v). which was approximately one time higher than that obtained with a single solvent. The partitioning behavior of lycopene in n‐hexane/methanol indicated that almost all extracted lycopene from R. palustris cells was dissolved in the n‐hexane phase. Further studies showed that lycopene extraction was much improved after an alkaline wash of R. palustris cells. The measured lycopene content was much higher than that in tomatoes which indicates that R. palustris will become an important biological resource of lycopene.  相似文献   

12.
Phenolic compound distribution of Turkish olive cultivars and their matching olive oils together with the influence of growing region were investigated. One hundred and one samples of olives from 18 cultivars were collected during two crop years from west, south and south‐east regions of Turkey. The olives were processed to oils and both olive and olive oil samples were evaluated for their phenolic compound distribution. The results have shown that main phenolics of Turkish olives were tyrosol, oleuropein, p‐coumaric acid, verbascoside, luteolin 7‐O‐glucoside, rutin, trans cinnamic acid, luteolin, apigenin, cyanidin 3‐O‐glucoside and cyanidin 3‐O‐rutinoside. Oleuropein and trans cinnamic acid were present in higher amounts among all phenolics. Principal component analyses showed that the growing region did not have drastic effect on phenolic profile of olives. The major phenolic compounds of olive oils were tyrosol, syringic acid, p‐coumaric acid, luteolin‐7‐O‐glucoside, trans cinnamic acid, luteolin and apigenin. Luteolin is a predominant phenolic compound in almost all oil samples. Total phenol concentrations of Southeast Anatolian oils were found to be lower than those of the other regions.  相似文献   

13.
《分离科学与技术》2012,47(4):778-793
Abstract

Sequential cold (room temperature) extraction from aged contaminated wood samples (southern yellow pine) with acetone followed by n‐pentane (upon a 3–4 days of sample incubation with each solvent) yielded more than 90% analyte recovery for both ambient (natural moisture content) and water‐submerged wood, significantly exceeding the recoveries obtained with one‐step extraction using single solvents and/or their mixtures. By contrast, a much faster ultrasound/Soxhlet extraction led to a virtually complete analyte recovery while using a 1∶1 mixture of these two solvents. Evidence obtained indicates that a possible role for the first solvent, acetone (in addition to collection of loose analyte), is the removal of an aqueous barrier surrounding the strongly adsorbed hydrocarbon, thus enabling its extraction by the second (non‐polar) solvent. For larger analyte concentrations (>60 mg n‐hexadecane/g wood), the high‐affinity binding sites became saturated (yielding 5–10 mg unrecovered analyte/g wood), and then a single solvent was sufficient for a near‐quantitative extraction.  相似文献   

14.
A radial diffusion assay was employed to quantify condensed tannins (CT) in feed and feces of mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). This biological assay measures the precipitation of bovine serum albumin (BSA), with the area of the precipitation ring being proportional to the amount of extracted CT applied to the well. CT extracted from the bark of white spruce (Picea glauca) was used as the standard. CT were extracted with 70% (v/v) aqueous acetone and precipitated with 50% (v/v) aqueous methanol or 70% (v/v) aqueous acetone. Functional range of CT weights for suitable ring measurement was 0.5–4.0 mg, and equilibrium was achieved within an incubation period of 24 hr. Methanol (50%) was a more effective precipitation solvent than acetone (70%) having 13 ± 4% greater specific activity (P < 0.05) and superior capabilities for predicting CT content. Precipitation rings were evaluated on images magnified on a photocopier. Ring diameters measured on a 200% enlarged photocopy provided the most precise estimate of ring area (R2 = 0.98). This convenient method reduced analysis times and enhanced accuracy and precision of tannin quantification. Analytical consequences and future research requirements are considered.  相似文献   

15.
《分离科学与技术》2012,47(12):2942-2955
Abstract

This study investigated the effects of material particle size, irradiation time, extraction temperature, type of solvents, ethanol composition, and the ratio of liquid-to-sample on microwave-assisted extraction (MAE) of roots of Morinda citrifolia to obtain the most important anti-cancer compound, damnacanthal. The highest recovery of the compound was obtained after 5 min of MAE of small particle size material at 100 and 120°C. Longer extraction time caused the decrease in percent recovery due to the decomposition of the compound. Among the pure solvents tested, acetone and methanol gave the highest recovery. However, the use of ethanol-water solution (80% v/v) could considerably improve the yield of damnacanthal extracted. MAE was found to give the highest extraction efficiency when compared with other extraction methods such as extraction with electrical heating, soxhlet extraction, and ultrasound-assisted extraction (UAE).  相似文献   

16.
Crystallization of amorphous poly(lactic acid) (PLA) was investigated in various organic solvents, such as acetone, ethylacetate, diethylether, tetrahydrofurane, methanol, hexane, toluene, xylene, and o‐dichlorobenene. Most of the solvents, except hexane, induced crystallization of amorphous PLA. Acetone was the most effective solvent to accelerate the crystallization among the solvents used. The crystallization was induced by permeation of acetone into the amorphous phase of PLA, and the permeation obeyed Fick type diffusion. The crystallization rate increased with increasing of conducting temperature. Crystallized PLA formed α crystalline structure. The permeated acetone in the crystallized PLA gradually evaporated as time passes, and the elimination of acetone affected thermal and mechanical properties of the crystallized PLA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The effect of solvents on radiation‐induced grafting of styrene onto commercial fluorinated polymer films such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) and poly(tetrafluoroethylene‐co‐perfluorovinyl ether) (PFA) was investigated by a simultaneous irradiation technique. Three solvents, ie methanol, benzene and dichloromethane, were used to dilute styrene under various irradiation doses, dose rates and monomer concentrations. The effect of addition of mineral and organic acids on the degree of grafting in the presence of the three solvents was also studied. The degree of grafting was found to be strongly dependent upon the type of solvent and composition of the monomer/solvent mixture. Dilution of styrene with dichloromethane in various grafting conditions was found to enhance dramatically the degree of grafting compared with other solvents, and the maximum degree of grafting was achieved at a monomer/solvent mixture having a composition of 60:40 (v/v). The formation of polystyrene grafts in the three fluorinated films was verified using FTIR spectrometry. © 2001 Society of Chemical Industry  相似文献   

18.
Commercially available niger (Guizotia abyssinica (L.f.) Cass.) seed was investigated to evaluate the effect of extraction solvent on oil and bioactives composition. For this purpose, niger seeds were subjected to solvent extraction using solvents of different polarity, viz., hexane, petroleum ether, chloroform, acetone, methanol and ethanol. The oil content of niger seeds obtained after extraction with solvents of different polarities was in the range of 31.8–41.3 g/100 g. The extracted oil was characterized by the following parameters: color (40.0–95.0 Lovibond units), free fatty acids (3.6–12.3 g/100 g), peroxide value (3.2–7.8 mequiv O2/kg), iodine value (137.6–140.3 cg I2/g), saponification value (177.3–185.9 mg KOH/g) and unsaponifiable matter (1.3–4.3 g/100 g). Among fatty acids, linoleic acid (69.4–73.2 %) was the major fatty acid and trilinolein (31.2–33.4 %) was the major triacylglycerol. The composition of bioactive molecules was 171.9–345.8 ppm of total tocopherols; 247.1–2,647.7 ppm of total phenolics; 1,249.6–6,309.3 ppm of total sterols and 18.9–181.0 ppm of total carotenoids. Among the tocopherols, α-tocopherol was the major component with 154–276 ppm. Of the total phenolics, vanillic acid with 176–1,709 ppm was the major phenolic compound in the oil extracted using different solvents. Ethanol-extracted oil showed a 13.9-fold better oxidative stability and a higher radical scavenging activity (IC50 value of 9.2 mg/mL) compared to hexane-extracted oil (IC50 value of 40.3 mg/mL). This is probably the first report of its kind on solvent extractability of bioactives of niger seed.  相似文献   

19.
The olive leaf phenolic composition of the Greek cultivars koroneiki, megaritiki and kalamon was determined using LC/MS. Furthermore, the antioxidant activity of olive leaf extracts from the above three cultivars, using solvents of increasing polarity (petroleum ether, dichloromethane, methanol and methanol/water: 60/40) was evaluated using the stable free radical diphenylpicrylhydrazyl (DPPH) test. Furthermore the oxidative stability index (OSI) was compared to that of the synthetic antioxidant TBHQ and commercial oleoresin (rosemary extract). The ability of phenolic compounds to inhibit the lipoxygenase (LOX) activity was also investigated. The ten main components determined in the olive tree leaf extracts for the cultivars koroneiki and kalamon were: secologanoside, dimethyloleuropein, oleuropein diglucoside, luteolin-7-O-glucoside, rutin, oleuropein, oleuroside, quercetin, ligstroside and verbascoside. Respective compounds for the cultivar megaritiki were: secologanoside, dimethyloleuropein, oleuropein diglucoside, luteolin7-O-glucoside, oleuropein, oleuroside, quercetin and ligstroside. In all three cultivars, oleuropein represented the main phenolic component. The solvent polarity influenced the total amount of the phenolic compounds determined. When methanol/water (60/40) was used, as solvent, more phenolic compounds were determined. The total amounts of phenols determined in the extracts, obtained by successive extractions using the above solvents, were 6,094, 5,579 and 6,196 mg/kg (mg gallic acid/kg dried olive leaves) for the cultivars megaritiki, kalamon and koroneiki, respectively. Among all extracts, methanol/water extracts exhibited the highest antioxidant activity as shown through the application of the DPPH and OSI methods. The OSI antioxidant activity followed the sequence: synthetic antioxidant TBHQ > commercial oleoresin > olive tree leaf extracts > control. Likewise, methanol/water olive leaf extracts significantly inhibited soybean lipoxygenase, although some small differences in the activity among the olive leaf extracts of the different cultivars were observed. The solvent polarity as well as the amount of the extract influenced the inhibitory activity. A positive correlation was shown between the antioxidant activity of leaf extracts and the total phenol content.  相似文献   

20.
This study aimed to optimise microwave-assisted extraction (MAE) conditions for total phenolic compounds (TPCs) and antioxidant activities of the alga Sargassum vestitum by using response surface methodology with Box–Behnken design. The results showed that solvent concentration had the greatest impact on TPC and antioxidant activities of the extracts, followed by radiation time and power. The optimal MAE conditions were ethanol concentration of 70%, radiation time of 75 s and power of 80%. The optimal MAE method showed much better extraction efficacy of phenolics and antioxidant capacities of the extract than conventional and ultrasonic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号