共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to enhance poly(lactic acid)'s (PLA) flexibility and ductility by blending it with another bioplastic. Poly(trimethylene malonate) (PTM), developed as part of this study, was synthesized from 1,3‐propane diol and malonic acid via melt polycondensation. Blend films of PLA and PTM were prepared by solvent casting from chloroform. Differential scanning calorimetry and thermogravimetric analysis were used to show shifted phase transitions and a single glass‐transition temperature, indicating miscibility of PTM in the blend films. Morphology and mechanical characterizations of the PLA/PTM blend films were performed by atomic force microscopy using a quantitative nanomechanical property mapping mode, tensile testing, and scanning electron microscopy. Miscible blends exhibited Young's modulus and elongation at break values that can significantly extend the usefulness of PLA in commercial applications. The blending of PTM with PLA resulted in films with a 27‐fold increase in toughness compared with neat PLA film. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40888. 相似文献
2.
In this study, we prepared immiscible blends of 75 wt % polylactide (PLA) with 25 wt % poly[(butylene adipate)-co-terephthalate] (PBAT) through an injection-molding (IM) process and a twin-screw extruder (TSE) followed by IM. An amorphous polylactide (A-PLA) and a semicrystalline polylactide (SC-PLA) were used as the matrixes to investigate the matrix crystallization effect on the morphology and property development of the blends with only IM. A blend of A-PLA with 25 wt % poly[(butylene succinate)-co-adipate] (PBSA) was also prepared through IM to compare its properties with those of the A-PLA–PBAT blends. The morphological, thermal, solid viscoelastic, tensile, and flexural properties of the blends were compared, and their dependency on the evolution of the blend morphology was analyzed. The tensile results show that when IM was used as the sole processing technique, the ductility and toughness were significantly improved only when SC-PLA was used as the matrix. Preprocessing through TSE also resulted in the enhancement of the blend ductility. In A-PLA–PBSA, the vitrification of PLA hindered the crystallization of PBSA to very low temperatures (<0°C) and resulted in a very nonuniform structure with weak intermolecular bonding between phases. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47636. 相似文献
3.
The influence of functional end groups on the thermal stability of poly(lactic acid) (PLA) in nitrogen‐ and oxygen‐enriched atmospheres has been investigated in this article using differential scanning calorimetry, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Functional end groups of PLA were modified by succinic anhydride and l ‐cysteine by the addition–elimination reaction. PLA was synthesized by azeotropic condensation of l ‐lactic acid in xylene and characterized by nuclear magnetic resonance. The values of the activation energies determined by TGA in nitrogen and oxygen atmospheres revealed that the character of functional end groups has remarkable influence on the thermal stability of PLA. Moreover, DMA confirmed the strong influence of functional end groups of PLA on polymer chains motion. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41105. 相似文献
4.
Poly(lactic acid) biocomposites reinforced with ultrafine bamboo‐char: Morphology,mechanical, thermal,and water absorption properties 下载免费PDF全文
In this study, ultrafine bamboo‐char (BC) was introduced into poly(lactic acid) (PLA) matrix to improve mechanical and thermal properties of PLA based biodegradable composites. PLA/BC biocomposites were fabricated with different BC contents by weight. Uniform dispersion of BC in the PLA matrix and good interaction via physical and chemical interfacial interlocks were achieved. The maximum tensile strength and tensile modulus values of 14.03 MPa and 557.74 MPa were obtained when 30% BC was used. Impact strength of the biocomposite with 30% BC was increased by 160%, compared to that of pure PLA. DSC analysis illustrated that PLA/BC biocomposites had a better thermal property. Crystallization temperature decreased and maximal crystallinity of 30.30% was observed with 30% BC load. We did not notice significant thermal degradation differences between biocomposites with different BC loadings from TGA. Better water resistance was obtained with the addition of BC. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43425. 相似文献
5.
A modified clay was used to prepare poly(L ‐lactic acid)/clay nanocomposite dispersions. X‐ray diffraction and transmission electron microscopy experiments revealed that poly(L ‐lactic acid) was able to intercalate the clay galleries. IR spectra of the poly(L ‐lactic acid)/clay nanocomposites showed the presence of interactions between the exfoliated clay platelets and the poly(L ‐lactic acid). Thermogravimetric analysis and differential scanning calorimetry were performed to study the thermal behavior of the prepared composites. The properties of the poly(L ‐lactic acid)/clay nanocomposites were also examined as functions of the organoclay content. The exfoliated organoclay layers acted as nucleating agents, and as the organoclay content increased, the crystallization temperature increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
6.
Mechanical,thermal, and water absorption properties of melamine–formaldehyde‐treated sisal fiber containing poly(lactic acid) composites 下载免费PDF全文
The present study focuses on the melamine–formaldehyde (MF) coating ratio and silanization of PLA/sisal composites. Poly(lactic acid) (PLA) was melt blended with short sisal fiber with and without MF resin coating. MF was applied at different weight ratios (sisal:MF = 1:1; 1:3, and 1:5) to coat the untreated or silanized sisal fibers which were incorporated up to 20 parts per hundred resin (phr) amount in PLA. PLA/sisal composites were produced by compression molding. It was found that the sisal:MF coating ratio at 1:1 by weight improved the tensile strength and tensile modulus of the composite with 10 phr sisal by 4% and 57%, respectively, compared to the virgin PLA. The initial and final decomposition (Ti) and (Tf) of PLA with untreated sisal were changed from 330.8 and 367.1 to 336.2 and 370.4 °C, respectively, after MF‐coating (sisal:MF weight ratio = 1:1). This enhancement in thermal stability was attributed to the strong interaction between the MF and sisal fiber. The water absorption of PLA/MF–sisal composites slightly decreased with increasing sisal:MF ratio. This is due to the fact that the MF‐coating substantially reduced the hydrophilic properties of sisal. Moreover, FTIR spectra and SEM images proved that sisal fibers were coated by MF resin successfully. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45681. 相似文献
7.
To determine the degree of compatibility between poly(lactic acid) and different biomaterials (fibers), poly(lactic acid) was compounded with sugar beet pulp and apple fibers. The fibers were added in 85 : 15 and 70 : 30 poly(lactic acid)/fiber ratios. The composites were blended by extrusion followed by injection molding. Differential scanning calorimetry and thermogravimetric analysis were used to analyze the extruded and extruded/injection‐molded composites. After melting in sealed differential scanning calorimetry pans, the composites were cooled through immersion in liquid nitrogen and aged (stored) at room temperature for 0, 7, 15, and 30 days. After storage, the samples were heated from 25 to 180°C at 10°C/min. The neat poly(lactic acid) showed a glass‐transition transition at 59°C with a change in heat capacity (ΔCp) value of 0.464. The glass transition was followed by crystallization and melting transitions. The enthalpic relaxation of the poly(lactic acid) and composites steadily increased as a function of the storage time. Although the presence of fibers had little effect on the enthalpic relaxation, injection molding reduced the enthalpic relaxation. The crystallinity percentage of the unprocessed neat poly(lactic acid) dropped by 95% after extrusion and by 80% for the extruded/injection‐molded composites. The degradation was performed in air and nitrogen environments. The degradation activation energy of neat poly(lactic acid) exhibited a significant drop in the nitrogen environment, although it increased in air. This meant that the poly(lactic acid) was more resistant to degradation in the presence of oxygen. Overall, injection molding appeared to reduce the activation energy for all the composites. Sugar beet pulp significantly reduced the activation energy in a nitrogen environment. In an air environment, both sugar beet pulp and apple fibers increased the activation energy. The enzymatic degradation of the composites showed a higher degradation rate for the extruded samples versus the extruded/injection‐molded composites, whereas the apple composites exhibited higher weight loss. The thermogravimetric analysis data showed that the degradation of unprocessed and extruded neat poly(lactic acid) followed a one‐step mechanism, whereas extruded/injection‐molded composites showed two‐step degradation. A higher fiber content resulted in up to three‐step degradation mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 相似文献
8.
Nanomechanical properties of poly(trimethylene malonate) and poly(trimethylene itaconate) during hydrolytic degradation 下载免费PDF全文
The aim of this work was to evaluate surface mechanical properties of two bioplastics, poly(trimethylene malonate) (PTM) and poly(trimethylene itaconate) (PTI), during hydrolytic degradation. Renewable resource‐based PTM and PTI were synthesized from 1,3‐propanediol (PDO), malonic acid (MA), and itaconic acid (IA) via melt polycondensation. The hydrolytic degradation was performed in deionized (DI) water (pH 5.4) at room temperature. Morphology and surface mechanical properties at the nanoscale were monitored by atomic force microscopy (AFM) using a quantitative nanomechanical property mapping mode as a function of degradation time. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to show shifted phase transitions depending on the degradation. DSC studies showed hydrolytic degradation induced crystallinity for PTI. After degradation for one week, the degree of crystallinity had significantly increased, and the elastic modulus of PTI had decreased by 58%. PTM was found to be hygroscopic. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41069. 相似文献
9.
Luca Basilissi Giuseppe Di Silvestro Hermes Farina Marco Aldo Ortenzi 《应用聚合物科学杂志》2013,128(5):3057-3063
Thermal behavior of polylactic acid (PLA)/nanosilica nanocomposites prepared via bulk ring opening polymerization from lactide was investigated by differential scanning calorimetry and thermogravimetric analysis (TGA). Both unmodified nanosilica and modified by surface treatments with different amounts of two distinct silanes were used. Samples containing pure silica show enhanced crystallization processes; with silane‐modified silica this effect is magnified, especially in the case of materials with high loadings of epoxy silane. Nonisothermal crystallization temperatures become higher and isothermal crystallization kinetics show a marked increase of Kinetic constant (Kc). TGA analyses show that, when pure nanosilica is present, nanocomposites have a thermal stability far greater than the one of standard PLA, starting their degradation at temperatures up to 70°C higher than the ones of pure PLA. When silanes are present, thermal stability lowers as silane content increases, but it is anyway higher than the one of the pure polymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
10.
To further improve the processability of water plasticized poly(vinyl alcohol) (PVA), boric acid (BA), which can rapidly form reversible crosslinked structure with the hydroxyl groups of PVA, was adopted as a modifier, and the water states, thermal performance, and rheological properties of modified PVA were investigated. The results showed that ascribing to the formation of the crosslinked structure between PVA and BA, the content of nonfreezing water in system increased, indicating that the bondage of PVA matrix on water enhanced, thus retarding the tempestuous evaporation of water in system during melt process and making more water remained in system to play the role of plasticizer. Meanwhile, this crosslinked structure shielded part hydroxyl groups in PVA chains, leading to the further weakening of the self‐hydrogen bonding of PVA, and guaranteeing a lower melting point and higher decomposition temperature, thus obtaining a quite wide thermal processing window, i.e., ≥179°C. The melt viscosity of BA modified PVA slightly increased, but still satisfied the requirements for thermal processing, thus reinforcing the flow stability of the melt at high shearing rate. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43246. 相似文献
11.
Preparation and properties of novel boric acid modified poly(aryl ether sulfone) membranes 下载免费PDF全文
Yongpeng Wang Haibo Zhang Mengzhu Liu Ye Zhu Zengduo Cui Yingjian Lin Xuanbo Zhu Zhenhua Jiang 《应用聚合物科学杂志》2014,131(19)
In this article, boric acid‐modified poly(aryl ether sulfone) (PES‐B) membranes were prepared by solution blending, solution casting, evaporation, and programmed temperature curing method for the first time. The chemical modification of poly(aryl ether sulfone) was accomplished by the curing of poly(aryl ether sulfone) with pendent phenyl hydroxide (PES‐OH) under the function of boric acid. The reaction mechanisms and the effects of boric acid content were thoroughly investigated. Processing conditions and structures of PES‐B were determined by FT‐IR spectra. It has been found that the B(OH)3/PES composite membranes were completely cured after treatment at 300°C for 4 h. When boric acid content was over 4.7%, PES‐B membranes presented phase separation and full cross‐linking structures. DSC measurements demonstrated that the addition of boric acid had influenced the glass transition temperature of PES‐B, which provided the proof of the appearance of cross‐linking network structure. TGA results confirmed that the thermal stability of the prepared PES‐B composites was improved. Furthermore, the cross‐linked composite membranes exhibited excellent mechanical property and solvent resistance. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40860. 相似文献
12.
Huanhuan Ge Fan Yang Yanping Hao Guangfeng Wu Huiliang Zhang Lisong Dong 《应用聚合物科学杂志》2013,127(4):2832-2839
Polylactide (PLA) is an attractive candidate for replacing petrochemical polymers because it is biodegradable. In this study, a specific PLA 2002D was melt‐mixed with a new plasticizer: glycerol monostearate (GMS). The PLA/GMS blends with different ratios were analyzed by dynamic mechanical analysis and differential scanning calorimetry. Although a slightly phase separation can be seen in DSC curves, the SEM micrographs of the impact fracture surfaces of PLA/GMS blends had a relatively good separation and this phenomenon was in good agreement with their higher impact strength. The result showed that the adding of GMS has enhanced the flexibility of PLA/GMS blends as compared to neat PLA. The relationship between complex viscosity and angular frequency of the PLA/GMS blends exhibits that the melt viscosity substantially lower than that of neat PLA. For example, at 10 rad/s, the melt viscosity of PLA/GMS (85/15) was reduced by about 7.2% compared to that of neat PLA. The impact strength was changed from 4.7 KJ/m2 for neat PLA to 48.2 KJ/m2 for 70/30 PLA/GMS blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
13.
The influence of the preparation procedure on the thermal and mechanical properties of linear low‐density polyethylene (LLDPE)– and LDPE–oxidized wax blends was investigated. It was found that mechanically mixed blends show reduced thermal stability as well as ultimate mechanical properties (stress and strain at break) compared to that of extrusion mixed blends. However, the structure of the blend and consequently its thermal and mechanical behavior also depend on the initial morphology of polyethylene. DSC measurements show miscibility up to high wax contents in both blend types, but increasing the amount of wax in LDPE blends induces increasing crystallinity. As a result, the LDPE/wax blends show improved thermal stability of between 20 and 50°C at low wax concentrations. Although the elasticity modulus of the blends increases, increasing the amount of wax generally degrades the mechanical properties. The main reason for this is the reduced number of tie chains. Changes in the average concentration of tie chains with increasing wax content were calculated and a correlation was made with the ultimate properties of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2446–2456, 2003 相似文献
14.
Crystallization and melting behavior of partially miscible six‐armed poly(l‐lactic acid)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) blends 下载免费PDF全文
The crystallization kinetics and spherulitic morphology of six‐armed poly(L‐lactic acid) (6a‐PLLA)/poly(3‐hydroxybutyrate‐co?3‐hydroxyvalerate) (PHBV) crystalline/crystalline partially miscible blends were investigated with differential scanning calorimetry and polarized optical microscopy in this study. Avrami analysis was used to describe the isothermal crystallization process of the neat polymers and their blends. The results suggest that blending had a complex influence on the crystallization rate of the two components during the isothermal crystallization process. Also, the crystallization mechanism of these blends was different from that of the neat polymers. The melting behavior of these blends was also studied after crystallization at various crystallization temperatures. The crystallization of PHBV at 125°C was difficult, so no melting peaks were found. However, it was interesting to find a weak melting peak, which arose from the PHBV component for the 20/80 6a‐PLLA/PHBV blend after crystallization at 125°C, and it is discussed in detail. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42548. 相似文献
15.
The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate) 下载免费PDF全文
Weraporn Pivsa‐Art Kazunori Fujii Keiichiro Nomura Yuji Aso Hitomi Ohara Hideki Yamane 《应用聚合物科学杂志》2016,133(8)
The effect of polyethylene glycol (PEG) on the mechanical and thermal properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends was examined. Overall, it was found that PEG acted as an effective plasticizer for the PLA phase in these microphase‐separated blends, increasing the elongation at break in all blends and decreasing the Tg of the PLA phase. Significant effects on other properties were also observed. The tensile strength and Young's modulus both decreased with increasing PEG content in the blends. In contrast, the elongation at break increased with the addition of PEG, suggesting that PEG acted as a plasticizer in the polymer blends. Scanning electron microscope images showed that the fracture mode of PLA changed from brittle to ductile with the addition of PEG in the polymer blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43044. 相似文献
16.
Effects of cyanuric acid (CA) on nonisothermal and isothermal crystallization, melting behavior, and spherulitic morphology of bacterial copolyesters of poly(3‐hydroxybutyrate), i.e., poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHBH), have been investigated. CA has excellent acceleration effectiveness on the melt crystallization of bacterial PHB, PHBV, and PHBH, better than the nucleating agents reported in the literatures, such as boron nitride, uracil, and orotic acid. PHBV and PHBH do not crystallize upon cooling from the melt at 10°C/min, while they are able to complete crystallization under the same conditions with an addition of 1% CA, with a presence of sharp crystallization exotherm at 75–95°C. Isothermal crystallization kinetics of neat and CA‐containing PHBV and PHBH were analyzed by Avrami model. Crystallization half‐times (t1/2) of PHBV and PHBH decrease dramatically with an addition of CA. The melting behavior of isothermally melt‐crystallized PHBV and PHBH is almost not influenced by CA. Spherulitic numbers of PHBV and PHBH increase and the spherulite sizes reduce with an incorporation of CA. Nucleation densities of PHBV and PHBH increase by 3–4 orders of magnitude with a presence of 1% CA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
17.
Nanocellulose has received increasing attention in science and industry in recent years as a nanoscale material for the reinforcement of polymer matrix composites due to its superior mechanical properties, renewability, and biodegradability. New nanocellulose sources, modifications, and treatments are under development to reduce the high energy required during production and to create a more suitable industrial-scale production process. Thus, this paper reviews plant-based nanocellulose composites and their properties, with a focus on their thermal-related characteristics. The purpose of this review is to establish for readers the impact of the incorporation of nanocellulose on the thermal and dynamic mechanical properties of nanocellulose composites. Understanding of the thermal properties is important for researchers to assess the suitability of the nanocomposites for a variety of applications in response to new and evolving societal requirements. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48544. 相似文献
18.
Effect of poly(vinylidene fluoride) polymorphic structures on the crystallization behavior of poly(butylene succinate) 下载免费PDF全文
The detail information of both α and β form poly(vinylidene fluoride) (PVDF) crystal effect on the crystallization behavior of poly(butylene succinate) (PBS) were systematically studied. The results show that β form PVDF can obviously improve the melt‐crystallization temperature of PBS during the nonisothermal crystallization process. Both crystallization time span and spherulitic size of PBS decrease with the increasing amount of β form PVDF, which enhances the primary nucleation of PBS. But α form PVDF shows no nucleating effect on PBS crystallization, exhibiting as almost unchanged Tc values for α form PVDF‐blended PBS samples. The intrinsic mechanism for the nucleating effect of β form PVDF on PBS was proposed to be the epitaxial crystallization. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40991. 相似文献
19.
Dekai Liu Yirui Shen Phyu Thin Wai Haryono Agus Pingbo Zhang Pingping Jiang Zhixin Nie Guoqiang Jiang Huihang Zhao Minzhong Zhao 《应用聚合物科学杂志》2021,138(13):50128
Recently, phthalates have been continuously banned in numerous fields by many countries. Therefore, the development of sustainable and efficient plasticizers has become particularly urgent. The waste cooking oil was used as the main raw materials in this study to synthesize an efficient plasticizer (acetylated-fatty acid methyl ester-trimellitic acid ester, AC-FAME-TAE). The structure of AC-FAME-TAE was characterized by FT-IR and 1H NMR. The performance of the poly(vinyl chloride) (PVC) plasticized by AC-FAME-TAE was tested and compared with those of the PVC plasticized with di-2-ethylhexyl phthalate (DOP) and EFAME (epoxy fatty acid methyl ester), respectively. DSC results indicated that AC-FAME-TAE had excellent plasticizing efficiency for PVC. The mechanical properties of PVC plasticized by AC-FAME-TAE were as comparable as PVC plasticized by DOP from the results of tensile test. In addition, the PVC plasticized by AC-FAME-TAE had excellent thermal stability and solvent resistance by the results of leaching test and TGA. 相似文献
20.
Synthesis,characterization, and properties of cashew gum graft poly(acrylamide)/magnetite nanocomposites 下载免费PDF全文
Graft copolymer nanocomposites based on cashew gum and poly(acrylamide) with different concentrations of nano‐iron‐oxide particles (Fe3O4) have been prepared by an in situ polymerization method. The characterization of graft copolymer composite was carried out by FTIR, UV, XRD, SEM, DSC, and TGA, electrical conductivity, and magnetic property [vibrational sample magnetometer (VSM)] measurements. The shift in the spectrum of UV and FTIR peaks shows the intermolecular interaction between metal oxide nanoparticles and the graft copolymer system. The spherically shaped particles observed from the SEM images clearly indicating the uniform dispersion of nanoparticles within the graft copolymer chain. The XRD studies revealed that the amorphous nature of the graft copolymer decreases by the addition of Fe3O4 nanoparticles. The glass transition temperature studied from DSC increases with increase in concentration of metal oxide nanoparticles. Thermal stability of composite was higher than the pure graft copolymer and thermal stability increases with increase in content of nanoparticles. Electrical properties such as AC conductivity and dielectric properties of the composites increased with increase in concentration of metal oxide nanoparticles. The magnetic property of graft copolymer nanocomposites shows ferromagnetic and supermagnetism and the saturation of magnetism linearly increased with increasing the Fe3O4 content in the polymer composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43496. 相似文献