首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyurethane (PU) has been widely used as a glue in various areas. However, adhesion in the presence of water is greatly impeded and results in most synthetic adhesive failure. In this study, we designed and synthesized a novel PU construction; underwater PU adhesives were created by the incorporation of synthetic glycerol monomethacrylate (GMA). Furthermore, the urethane structure helped the adhesive eliminate the interfacial water barrier through interactions that were stronger than hydrogen bonding, and GMA as a crosslinking agent was used to generate post‐covalent‐crosslinking networks through radical polymerization. This enhanced the cohesion so the diffusion of water molecules could be overcome. Fourier transform infrared spectroscopy, thermogravimetric analysis, underwater adhesion measurements, and tensile tests were used to characterize the chemical and mechanical properties of the as‐obtained adhesive. This led to an adhesive with a better mechanical strength and interfacial adhesion in water, and the results show that the mechanical properties (tensile strength, Young's modulus, and tensile elongation) of the GMA–PU adhesive were higher than those of the pure PU. As for the 4% GMA, the tensile strength was enhanced by 24.3% and the elongation was enhanced by 125.23% over those of the pure PU. This confirmed that the incorporation of GMA into the PU matrix indeed induced increasing cohesion, and the sample's adhesive strength was 21.19 ± 3.9 MPa; this indicated a superior adhesive strength over that of the pure PU. In addition, we can foresee that underwater adhesion will play an important role in prospective surgery and engineering areas. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46579.  相似文献   

2.
Bisphenol‐C‐formaldehyde‐toluene‐2,4‐di isocyanate polyurethane (PU) has been synthesized at room temperature and used for the fabrication of jute and jute–rice husk/wheat husk hybrid composites. PU–jute and PU–jute–RH/WH composites were prepared under pressure of 30.4 MPa at room temperature for 8 h, while PU–jute–RH/WH composites were prepared under same pressure at 110°C for 5 h. PU–jute composite has good tensile strength and flexural strength (50–53 MPa), while PU–jute–RH/WH hybrid composites have moderate tensile strength (9–11 MPa) and a fairly good flexural strength (15–31 MPa). Composites possess 1.1–2.2 kV electric strength and 0.94–1.26 × 1012 ohm cm volume resistivity. Water absorption in PU–jute composite is different in water (9.75%), 10% HCl (12.14%), and 10% NaCl (6.05%). Equilibrium water uptake time in salt environment is observed 96 h, while in pure water and acidic environments it is 192 h. In boiling water equilibrium water content and equilibrium time are found to be 21.7% and 3 h, respectively. Water absorption increased 2.2 times in boiling water, whereas equilibrium time reduced 64 times. Thus, PU–jute composite has excellent hydrolytic stability against boiling water, 10% HCl, and 10% NaCl solutions. Fairly good mechanical and electrical properties and excellent hydrolytic stability of composites signify their usefulness for low cost housing units and in electrical and marine industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2363–2370, 2006  相似文献   

3.
Three different surface modifiers, octadecyl trimethyl ammonium (ODTMA), octadecyl primary ammonium (ODPA), and decanediamine (DDA) were used to modify Na+? montmorillonite (MMT), and the resultant organoclays were coded as ODTMA‐MMT, ODPA‐MMT, DDA‐MMT, respectively. Rigid PU foams/organoclay composites were prepared by directly using organoclay as the blowing agent without the addition of water. Investigation shows that the morphology of the nanocomposites is greatly dependent on the surface modifiers of clay used in the composites. In detail, DDA‐MMT is partially exfoliated in the PU matrix with the smallest cell size, while two others are intercalated in the PU matrices with smaller cell sizes. The sequence of their cell sizes is pristine PU foams > rigid PU foams/ODTMA‐MMT > rigid PU foams/ODPA‐MMT > rigid PU foams/DDA‐MMT, and the average cell size of rigid PU foams/DDA‐MMT composites decreases evidently from 0.30 to 0.07 mm. Moreover, all rigid PU foams/organoclay composites show remarkable enhanced compressive and tensile strengths as well as dynamic properties than those of PU foams, and the enhancement degree coincides well with the relative extent of internal hydrogen bonding of materials and gallery spacing of organoclay. For example, in the case of rigid PU foams/DDA‐MMT composite, 214% increase in compressive strength and 148% increase in tensile strength compared with those of pure PU foams were observed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
Polylactide (PLA)/polyurethane (PU) composites were prepared by reactive blending method with in situ formation of PU particles via the reaction between polyester polyol (PPG) and toluene‐2,4‐diisocyanate (TDI). The interfacial compatibility and adhesion between the PLA and PU phases were greatly improved by the reaction of the terminal hydroxyl groups of PLA and N?C?O groups of TDI forming graft copolymer, as confirmed by FTIR spectroscopy. The elongation at break and notch impact strength of PLA/PU composites increased considerably with increasing PU content, and the tensile strength of PLA/PU composites decreased slightly compared with that of pure PLA. Upon addition of 12 wt % PU, the elongation at break and notch impact strength increased to 175.17% and 10.96 kJ/m2, respectively, about 27 times and 5.4 times greater than the corresponding values for the pure PLA. The tensile strength decreased only slightly to 48.65 MPa. The excellent interfacial adhesion, the dispersed PU elastomeric particles acting as stress concentration areas, and the triggering of large matrix shear yield as well as many fibrils by internal cavitation were the main mechanical toughening mechanisms. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44383.  相似文献   

5.
A series of binary composites based on HDPE (high density polyethylene) and nanoinorganic particles such as nano‐CaCO3 and OMMT (organic montmorillonite) were prepared. Their properties including tensile, impact strength, and some thermal properties were tested. The results showed that binary composite has partial improvement in mechanical properties compared with pure HDPE. A ternary composite nano‐CaCO3/OMMT/HDPE was prepared and characterized. It was found that the mechanical and thermodynamic properties of this ternary composite have been enhanced greatly compared with both pure HDPE and binary composites. The tensile strength, Young's modulus, flexural strength, elastic modulus, and impact strength of nano‐CaCO3/OMMT/HDPE were increased 124.6%, 302.7%, 73.86%, 58.97%, and 27.25%, respectively. The DMA test results showed that the mechanical properties of ternary composite were increased because of the limitation on the movement of HDPE due to inorganic particles. The synergistic effect introduced by nanoparticles may play an important role in all these processes. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

6.
The main target of the current work was to study the mechanical properties of milled E‐glass, S‐glass, and high‐strength (carbon fiber)‐reinforced epoxy composites. At first, tensile behavior of the as‐received fibers was evaluated by conducting different tensile tests. Afterwards, the effects of employing an integral blended coupling agent on the performance of the pure epoxy were investigated by microhardness tests and optical microscopic images. Then, the epoxy composites were prepared simply by mixing and stirring 1, 3, and 5 wt% of the milled fibers with the epoxy resin and its hardener. The effects of mixture degassing and addition of the coupling agent to the mixture were examined based on the mechanical properties of the fabricated composites. Also, scanning electron microscope macro‐ and micrographs of the transverse and longitudinal fracture surfaces were used to study the fracture behavior and identify the active toughening mechanisms. The best results were obtained for the degassed and modified milled (carbon fiber epoxy)‐reinforced composite, which enhanced the tensile strength, elongation, Young's modulus, and toughness up to 12%, 17%, 19%, and 27%, respectively. The current study shows that the composite not only is cost effective but also offers better mechanical properties. J. VINYL ADDIT. TECHNOL., 24:130–138, 2018. © 2016 Society of Plastics Engineers  相似文献   

7.
张克宏  王逍冉 《中国塑料》2020,34(11):23-28
以聚乳酸(PLA)为基体、聚氨酯(PU)为增韧相、纳米纤维素(NCF)为增强相,通过溶液法与熔融共混制得PLA/PU/NCF复合材料,研究了PU和NCF的含量对PLA力学性能与热稳定性的影响。采用傅里叶变换红外光谱仪、热失重分析仪、扫描电子显微镜和力学性能测试手段对PLA/PU/NCF复合材料的结构和性能进行了表征和分析。结果表明,柔顺的PU分子限制了PLA的结晶,提升了PLA基体的韧性;刚性的NCF通过氢键作用提升了PLA基体的强度;当NCF含量为3 %、PU含量为17 %时,PLA/PU/NCF复合材料的拉伸强度和断裂伸长率比纯PLA提升了12.10 %和694.91 %;高温热稳定性有了显著改善,复合材料的600 ℃残炭率为19.36 %。  相似文献   

8.
Waterborne polyurethane (WBPU) and multiwalled carbon nanotubes (CNTs) composite films with 0–4.0 wt% CNTs were prepared by ultrasonic dispersion of carboxylic acid‐functionalized CNTs in WBPU followed by emulsion casting process. The elongations at break of the WBPU/CNTs composites increase with the incorporation of CNTs. The tensile strength and crystallinity of the nanocomposite films with lower CNTs contents (<2 wt%) increase obviously; while the tensile strengths of the composites with more CNTs (≥2 wt%) decrease, in contrast to the pure PU film. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that the CNTs are uniformly dispersed in the composites incorporated with lower CNTs contents (≤1.5 wt%). However, aggregation of CNTs increased with increasing CNTs content in the WBPU/CNTs composites, causing the macrophase separation. The dispersion state of the CNTs affects the crystallinity of the PU matrix and the phase separation of the composites, which are two key factors to influence the mechanical properties of the WBPU/CNTs composites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

9.
The graphite‐filled polyurethane/poly(methyl methacrylate‐butyl methacrylate) (PU/P(MMA‐BMA)) semi‐interpenetrating polymer networks (IPNs) were synthesized by sequential method. The influences of graphite particle content and size on the 60/40 PU/P(MMA‐BMA) IPNs were studied. The damping properties of IPN composites were evaluated by dynamic mechanical thermal analysis (DMA) and cantilever beam resonance methods. The mechanical performances were investigated using tensile and hardness devices. DMA results revealed that the incorporation of graphite particles improved damping properties of IPNs significantly. The 5% graphite‐filled IPN composite exhibited the widest temperature range and the highest loss factor (tan δ) when the test frequency was 1 Hz. As to the damping properties covering a wide frequency range from 1 to 3,000 Hz, the addition of graphite particles broadened the damping frequency range (Δf, where tan δ is above 0.3) and increased the tan δ value of IPNs. Among them, the composite with 7.5% graphite showed the best damping capacity. And the hardness and the tensile strength of IPN composites were also improved significantly. POLYM. COMPOS., 2013 © 2013 Society of Plastics Engineers  相似文献   

10.
聚氨酯/13X分子筛复合材料的制备   总被引:1,自引:1,他引:0  
采用预聚法制备了聚氨酯(PU)/13X分子筛复合材料。考察了在两种硬度下,分子筛含量对聚氨酯弹性体力学性能、耐溶剂性能的影响。结果表明,随着分子筛质量分数的增加,复合材料的拉伸强度、撕裂强度均呈上升趋势。当分子筛质量分数为5%、邵A硬度为70时其复合材料拉伸强度为31 MPa,撕裂强度达48.7 kN/m;当分子筛质量分数为5%、邵A硬度为80时其复合材料拉伸强度为42 MPa,撕裂强度达最大值61 kN/m。随着分子筛质量分数的增加,2种复合材料的溶胀度也有不同程度的下降。DSC分析表明,分子筛使PU/13X复合材料的结晶形态发生了改变,提高了其耐热温度。  相似文献   

11.
This article focuses on the preparation and mechanical properties of silica/poly(vinyl chloride) (PVC) composites enriched with 60% mass ratio of 130 nm and 30 nm silica sphere fillers. Silica particles were pre‐treated with silane, IO7 T7(OH)3 (trisilanol isooctyl polyhedral‐oligomeric silsesquioxane) to prevent agglomeration. The dispersion and interfacial compatibility of silica particles in a PVC matrix were investigated by scanning electron microscopy. The composite mechanical properties were characterized by tensile test, revealing improved Young modulus and tensile strength. Compared to pure PVC, the stiffness of 30 nm and 130 nm silica/PVC composites is on average increased by 30–40%, respectively. Similar trend was observed for the composite tensile strength on the change of the silica size. In contrast, elongation at break decreased for both composites compared to pure PVC, for 15% in 30 nm and for 30% in 130 nm silica/PVC composite. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

12.
Two series of toughened, semiconductive polyaniline (PANI)/polyurethane (PU)‐epoxy (PANI/PU‐EPOXY) nano‐composites were prepared using a conductive polymer, PANI, and PU prepolymer‐modified‐diglycidyl ether of bisphenol A (DGEBA) epoxy. First, the PU prepolymer‐modified epoxy oligomer was synthesized by a stoichiometric reaction between the terminal isocyanate groups of the PU prepolymer and the pendent hydroxyl groups of the epoxide. PU prepolymers were made either of polyester (polybutylene adipate, PBA) or polyether (polypropylene glycol, PPG) segments. The composites were characterized by thermal, morphological, mechanical, and electrical studies. Impact strength was enhanced 100% in PU (PPG 2000)‐modified composites; whereas, only ca. 30–50% increases in impact strength were observed for the other modified composites. In addition, the thermal stability of this composite proved superior to that of neat epoxy resin, regardless of a PU content at 27.5 wt%. Scanning electron microscopy (SEM) morphology study showed that the spherical PU (PPG 2000) particles (ca. 0.2–0.5 μm) dispersed within the matrix accounts for these extraordinary properties. The conductivity of the composite increased to ca. 10?9–10?3 S cm?1 upon addition of PANI when tested in the frequency range 1 kHz–13 MHz. This study demonstrated a useful way to simultaneously improve the toughness and conductivity of the epoxy composite, thus rendering it suitable for electromagnetic interference and various charge dissipation applications. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

13.
The effect of polyurethane on the mechanical properties and Mode I and Mode II interlaminar fracture toughness of glass/epoxy composites were studied. Polyurethanes (PU) synthesized using polyols and toluene diisocyanate were employed as modifier for epoxy resin by forming interpenetrating polymer network. The PU/Epoxy IPN was used as matrix material for GFRP. PU modified epoxy composite laminates having varying PU contents were prepared. The effect of PU content on the mechanical properties like interlaminar fracture toughness (Mode I, G1c and Mode II, GIIc), tensile strength, flexural strength, and Izod impact strength were studied. The morphological studies were conducted on the fractured surface of the composite specimen by scanning electron microscopy (SEM). Tensile strength, flexural strength, and impact strength of PU‐modified epoxy composite laminates were found to increase inline with interlaminar fracture toughness (G1c and GIIc) with increasing PU content to a certain limit and then it was found to decrease with increase in PU content. It was observed that toughening of epoxy with PU increases the Mode I and Mode II delamination toughness up to 17 and 120% higher than that of untoughened composite specimen, respectively. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
This article reports new‐generation 2D‐MoS2 nanosheet‐containing polyurethane (PU) composite materials with improved thermo‐mechanical stiffness, thermal stability, and fire retardation properties. The surface of 2D‐MoS2 nanosheets is modified with melamine (M‐MoS2), and then PU composites with varying M‐MoS2 loadings are synthesized using an in situ polymerization method. During polymerization, 3‐amino‐propyl‐trimethoxy silane is introduced to create silicate functionality on the PU chains, which further improves the compatibility between PU and M‐MoS2. Microscopy studies confirm the distribution of highly intercalated and agglomerated M‐MoS2 nanosheets in the PU matrix. The PU composite containing 5 wt% M‐MoS2 shows a 65% higher storage modulus (at 30 °C) than that of pure PU. The thermal stability of pure PU is significantly improved (62 °C) after composite formation. Thermogravimetric analysis in combination with FTIR spectroscopy shows that the PU/M‐MoS2 composites release less toxic gases during thermal degradation compared to pure PU. Moreover, the composite containing 5 wt% M‐MoS2 shows improved fire retardation properties, with 45% and 67.5% decrease in the peak heat and total heat release rates, respectively, as compared with those of pure PU. In summary, 2D‐MoS2 is shown to have potential as an advanced nano‐filler to obtain stiffer PU composite with improved fire retardant property for structural application.  相似文献   

15.
The polyurethane (PU)/hydrophobic silica gel (HSG) fibrous membranes with the hydrophobic and breathable surface was fabricated via electrospinning. By employing the HSG incorporation, mechanical properties, thermal stability, and waterproofness of the composite membranes could be improved. The porous structure of the membranes would be regulated by tuning the temperatures of thermal treatment. When HSG content increased to 3 wt%, the PU/HSG composite membranes possessed remarkable tensile strength of 6.3 MPa and high water contact angle (WCA) of 134°. Furthermore, the maximum WCA (142° ± 1°), good hydrostatic pressure (5.45 kPa), large water vapor transmission rate (8.05 kg/m2/day), and high air permeability (9.25 L/m2/s) of the composite membranes could be achieved by heat treatment at 120°C. The resultant membranes performed significantly better when compared to the pure PU membranes under the same conditions, such as the higher tensile strength (100%), better waterproofness (200%), and stronger breathablity (25%). POLYM. ENG. SCI., 58:1381–1390, 2018. © 2017 Society of Plastics Engineers  相似文献   

16.
High-performance composites of vinylpyridine-styrene copolymers and polyamic acid (PAA) were prepared by the so-called ‘in situ polymerization method’. Poly(4-vinylpyridine-co-styrene) (P4VPy-St) and poly(2-vinyl pyridine-co-styrene) (P2VPy-St) were used as flexible matrix polymers. A molecular composite could be obtained from a polymer pair having an attractive interaction such as a coulombic interaction. Their morphologies were observed by scanning electron microscopy (SEM); mechanical properties of these composites were studied by tensile tests. The PAA content dependence of tensile strength for the composite films obtained by the in situ polymerization method was investigated. The tensile strength of the resulting composite was about 1.5 times higher than that of PAA film. The coulombic interaction between the pyridine moiety in the matrix copolymer and resulting PAA enhanced both the miscibility and mechanical properties of the composites. Furthermore, a polyimide (PI) structure was formed by stepwise heat-treatment and greatly enhanced the tensile strength of the composite films.  相似文献   

17.
Novel castor oil‐based polyurethane/α‐zirconium phosphate (PU/α‐ZrP) composite films with different α‐ZrP loading (0–1.6 wt %) and different NCO/OH molar ratios were synthesized by a solution casting method. The characteristic properties of the PU/α‐ZrP composite films were examined by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile testing. The results from Fourier transform infrared spectroscopy indicated that strong intermolecular hydrogen bonding formed between α‐ZrP and PU, XRD and SEM results revealed that the α‐ZrP particles were uniformly distributed in the PU matrix at low loading, and obvious aggregation existed at high loading. Because of hydrogen bonding interactions, the maximum values of tensile strength were obtained with 0.6 wt % α‐ZrP loading and 1.5 of NCO/OH molar ratio in the matrix. Evidence proved that the induced α‐ZrP used as a new filler material can affect considerably the mechanical and thermal properties of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Carbon nanotube (CNT)/styrene–ethylene–butylene–styrene (SEBS) composites were prepared via a sequential process of (electrostatic adsorption assisted dispersion)‐plus‐(melt mixing). It was found that CNTs were uniformly embedded in SEBS matrix and a low percolation threshold was achieved at the CNT concentration of 0.186 vol %. According to thermal gravimetric analysis, the temperatures of 20% and 50% weight loss were improved from 316°C and 352°C of pure SEBS to 439°C and 463°C of the 3 wt % CNT/SEBS composites, respectively. Meanwhile, the tensile strength and elastic modulus were improved by about 75% and 181.2% from 24 and 1.6 MPa of pure SEBS to 42 and 4.5 MPa of the 3 wt % CNT/SEBS composite based on the tensile tests, respectively. Importantly, this simple and low‐cost method shows the potential for the preparation of CNT/polymer composite materials with enhanced electrical, mechanical properties, and thermal stability for industrial applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40227.  相似文献   

19.
To construct waterborne polyurethane with excellent water resistance and mechanical properties, an organic‐inorganic hybrid nanocomposite based on modified halloysite nanotubes (mHNTs) and polyurethane was prepared. The HNTs were modified with an amino‐silane coupling agent (KH550) and then reacted with polypropylene glycol, 2,2‐Dimethylol propionic acid, and Toluene diisocyanate to form mHNTs/PU aqueous dispersions. The structure of the siloxane functionalized mHNTs was confirmed by a Fourier transform infrared study. The PU/mHNTs composites were characterized by using differential scanning calorimetry, scanning electronic microscopy, thermal gravimetric analysis, a tensile test, particle size analysis, and a water swelling experiment. The tensile strength, Young's modulus, and elongation at the break of the composite polymer with 0.5 wt % mHNTs was shown to be significantly improved, by approximately 200%, 200%, and 30%, respectively. An excess amount of mHNTs could weaken the reinforcing effect and stability of the composite emulsion. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43949.  相似文献   

20.
Sea‐island polyurethane (PU)/polycarbonate (PC) composite nanofibers were obtained through electrospinning of partially miscible PU and PC in 3 : 7 (v/v) N,N‐dimethylformamide (DMF) and tetrahydrofuran (THF) mixture solvent. Their structures, mechanical, and thermal properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG), and differential scanning calorimetry (DSC). The structures and morphologies of the nanofibers were influenced by composition ratio in the binary mixtures. The pure PC nanofiber was brittle and easy to break. With increasing the PU content in the PU/PC composite nanofibers, PU component not only facilitated the electrospinning of PC but improved the mechanical properties of PU/PC nanofibrous mats. In a series of nanofibrous mats with varied PU/PC composition ratios, PU/PC 70/30 showed excellent tensile strength of 9.60 Mpa and Young's modulus of 55 Mpa. After selective removal of PC component in PU/PC composite nanofibers by washing with acetone, the residual PU maintained fiber morphology. However, the residual PU nanofiber became irregular and contained elongated indents and ridges along the fiber surface. PU/PC composite fibers showed sea‐island nanofiber structure due to phase separation in the spinning solution and in the course of electrospinning. At PC content below 30%, the PC domains were small and evenly dispersed in the composite nanofibers. As PC content was over 50%, the PC phases became large elongated aggregates dispersed in the composite nanofibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号