首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The effect of the spinning speed on structural and thermal properties of polyacrylonitrile (PAN) fibers prepared by plasticized spinning was investigated. The PAN fibers were characterized by scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. We found that the surface morphology of the fibers was relatively smooth. The presence of a small amount of surface defects was caused by the instability of spinning process. The final fibers may have had two tensile fracture modes, that is, cluster breaking and axial split fracture. The structure of the as‐spun fibers was destroyed when the spinning speed was up to 500 m/min; this led to chain scission in the amorphous region. The final fibers exhibited mechanical properties that were roughly comparable to those of commercial PAN fibers. The changing trend in the cyclization temperature of the final fibers was consistent with that of crystallinity, which first increased and then decreased. The decomposition temperature in the amorphous region increased with increasing spinning speed. The decomposition temperature in the crystalline region increased with increasing crystallinity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45267.  相似文献   

2.
Graphene oxide (GO) as a positive reinforcement filler was dispersed into a poly(vinyl alcohol) (PVA) dope and wet‐spun into composite fibers. The effects of two EtOH coagulation baths maintained at ?5 and 25 °C, respectively, on the morphology, structure, and mechanical properties of the composite fibers were investigated. The results show that gel spinning at ?5 °C led to a relatively large shrinkage ratio, thin diameter, and low porosity of the as‐spun fibers. Simultaneously, the low coagulation temperature also greatly contributed to the formation and preservation of the liquid‐crystalline phase of the GO sheets and interrupted the crystalline zone of PVA less. As a result, either the tenacity or the elongation at break of the fibers spun at ?5 °C was higher than those of the fibers spun through a coagulation bath at 25 °C. In particular, 1 wt % GO showed the highest reinforcement effects among all of the wet‐spun composite fibers. Hence, controlling the gelling–demixing process at a low temperature will provide more instructive insights for tailoring functional industrial textiles with excellent mechanical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45463.  相似文献   

3.
A rapid, dual‐stabilization route for the production of carbon fibers from polyacrylonitrile (PAN) precursor fibers is reported. A photoinitiator, 4,4′‐bis(diethylamino)benzophenone, was added to PAN solution before the fiber wet‐spinning step. After a short UV treatment that induced cyclization and crosslinking at a lower temperature, precursor fibers could be rapidly thermo‐oxidatively stabilized and successfully carbonized. Scanning electron microscopy micrographs show no deterioration of the microstructure or hollow‐core formation in the fibers due to UV treatment or presence of photoinitiator. Fast‐thermally stabilized pure PAN‐based carbon fibers show hollow‐core fiber defects due to inadequate thermal stabilization, but such defects were not observed in carbon fibers derived from fast‐thermally stabilized fibers that contained photoinitiator and were UV treated. Tensile testing results confirm that fibers containing 1 wt % photoinitiator and UV treated for 5 min display higher tensile modulus than all other sets of thermally stabilized and carbonized fibers. Wide‐angle X‐ray diffraction results show a higher development of the aromatic structure and molecular orientation in thermally stabilized fibers. No significant increase in interplanar spacing or decrease in crystals size were observed within the UV‐stabilized carbon fibers containing photoinitiator, but such fibers retain a higher extent of molecular orientation when compared with control fibers. These results establish for the first time, the positive effect of the external addition of photoinitiator and UV treatment on the properties of the PAN‐based fibers, and may be used to reduce the precursor stabilization time for faster carbon fiber production rate. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40623.  相似文献   

4.
In order to optimize the use of residues of enzymatic hydrolysis of corn stalk (REHCS) and explore the low‐cost and sustainable raw material substitute for carbon fibers, three types of lignin samples were extracted from REHCS by various extraction methods, and then they were converted into carbon fibers (CFs) by electrospinning, thermostabilization, and carbonization under the same process conditions. The microstructure and mechanical properties of the three types of carbonized fibers were different. The CFs from the ethanol organosolv lignin were actually smooth and brittle carbon films. The CFs from the formic acid/acetic acid organosolv lignin had microscopic pores, causing poor mechanical properties. Comparatively, the CFs from the alkaline lignin demonstrated preferable microstructure and mechanical properties. The reasons for the differences were analyzed by characterizing the lignin samples, precursor fibers, and resultant CFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45580.  相似文献   

5.
The performance of carbon fibers depends on the quality of the precursor and the conditions of the thermal treatment. In detail, for a PAN precursor fiber the viscosity of a spinning dope and the draw ratio during the spinning process needs to be considered. Through wet spinning, different types of PAN precursor fibers with defined spinning parameters, including solid content, solvent content in a bath, and especially draw ratio resulting in defined cross section diameters, were fabricated and analyzed with tensile tests, density investigations, SEM, TGA‐MS, FTIR, and XRD. The results show that the mechanical properties of the fibers correlate to crystallinity. The cross section diameter is strongly related to the morphology of the fibers after thermal treatment. By extending the postdrawing of PAN fibers high tenacities were obtained at the cost of the cross section shape. In addition, TGA measurements reveal trapped residues of the wet spinning process as well as show several chemical reactions takes place at the same time at different temperatures. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43698.  相似文献   

6.
To overcome serious rigidity depression of rubber‐toughened plastics and fabricate a rigidity‐toughness balanced thermoplastic, a combination of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) and ethylene‐propylene rubber (EPR) was used to toughen polypropylene. The dynamic mechanical properties, crystallization and melting behavior, and mechanical properties of polypropylene (PP)/EPR/SEEPS blends were studied in detail. The results show that the combination of SEEPS and EPR can achieve the tremendous improvement of low‐temperature toughness without significant strength and rigidity loss. Dynamic mechanical properties and phase morphology results demonstrate that there is a good interfacial strength and increased loss of compound rubber phase comprised of EPR component and EP domain of SEEPS. Compared with PP/EPR binary blends, although neither glass transition temperature (Tg) of the rubber phase nor Tg of PP matrix in PP/EPR/SEEPS blends decreases, the brittle‐tough transition temperature (Tbd) of PP/EPR/SEEPS blends decreases, indicating that the increased interfacial interaction between PP matrix and compound rubber phase is also an effective approach to decrease Tbd of the blends so as to improve low‐temperature toughness. The balance between rigidity and toughness of PP/EPR/SEEPS blends is ascribed to the synergistic effect of EPR and SEEPS on toughening PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45714.  相似文献   

7.
Five kinds of polylactides (PLAs), with different D ‐lactide contents and tacticities, were subjected to high‐speed melt‐spinning experiments. In addition to stereochemical purity, the PLA types differed in molecular mass and molecular mass distribution. The properties of the different PLA materials were characterized by thermogravimetry, differential scanning calorimetry, dynamic mechanical analysis, size exclusion chromatography, and 1H‐NMR and 13C‐NMR spectroscopy. The material was spun with a high‐speed spinning process within the range 2000–5000 m/min. The physical and tensile properties of the fibers were determined. The maximum tensile properties of the fibers were a 300 MPa tenacity at an elongation at break of 30% and a tensile modulus of 6.8 GPa. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 800–806, 2004  相似文献   

8.
Poly(vinylidene difluoride) (PVDF) has been widely used in piezoelectric applications as films and nanofiber mats, but there are limited publications on piezoelectric wet‐spun fibers. In this work, PVDF fibers were prepared using the wet spinning method, and the processing parameters, including the drawing ratio and heat setting temperature, were controlled in the continuous wet spinning system to increase the β‐phase crystallinity of the fibers. In addition, the wet‐spun PVDF fibers were compressed by a rolling press to eliminate voids in the fibers. Then, the compressed PVDF fibers were poled to align the molecular dipoles. The crystal structures of the PVDF fibers were investigated using X‐ray diffraction and Fourier‐transform infrared spectroscopy. Single filament tensile tests were performed to measure the tensile strength of the fibers. The morphologies of the PVDF fibers with respect to the processing parameters were observed by scanning electron microscope (SEM) and polarization optical microscopy. The piezoelectric constant of the prepared PVDF fibers was then measured using a d33 meter. The wet‐spun PVDF fibers showed the highest β‐phase and piezoelectric constants when the drawing ratio and heat setting temperature were 6 and 150 °C, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45712.  相似文献   

9.
Liquid oxidized poly(1,2‐butadiene) (LOPB) with multi epoxy groups is synthesized to modify diglycidyl end‐caped poly(bisphenol A‐co‐epichlorohydrin) (DGEBA) cured by 4,4′‐diaminodiphenyl sulfone (DDS). FTIR spectra shows that DGEBA and LOPB can be effectively cured by DDS, and the epoxide rubber particles are evenly distributed in the composites till their addition up to 20 wt % of DGEBA as seen from the scanning electron microscope (SEM). Their decomposition temperatures (Td) increase with the increase in LOPB addition at around 10 wt % of DGEBA while the Td for the composite containing 20 wt % LOPB of DGEBA is lower than that of the neat epoxy. The addition of LOPB improves their storage moduli and especially these values at temperatures higher above 150 °C; all the composites exhibit higher glass transition temperature (Tg) than that of the neat epoxy, and the maximum Tg reaches up to 255 °C for the composite containing 15 wt % LOPB of DGEBA. The incorporation of LOPB effectively decreases their dielectric constants and the composite with 10 wt % LOPB of DGEBA possesses the lowest one. The synergic improvements in their various properties are attributed to the networks formation via covalent linkage between the two phases in these reactive blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44689.  相似文献   

10.
Polyimide (PI) fibers with enhanced mechanical properties and high thermal and dimensional stability were prepared via a two‐step dry‐spinning process through the introduction of 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride (BPDA) containing biphenyl units into rigid homopolyimide of pyromellitic dianhydride (PMDA) and 4,4′‐oxydianiline. The attenuated total reflectance–Fourier transform infrared spectra results imply that the incorporated BPDA moieties accelerate the imidization process and increase the imidization degree (ID) of the precursor fibers; this was attributed to the increased molecular mobility of the polymer chains. Two‐dimensional wide‐angle X‐ray diffraction spectra indicated that the prepared PI fibers possessed a well‐defined crystal structure and polymer chains in the crystalline region were highly oriented along the fiber axis. The PI fiber, with the molar ratio of PMDA/BPDA being 7/3, showed optimum tensile strength and modulus values of 8.55 and 73.21 cN/dtex, respectively; these were attributed to the high IDs and molecular weights. Meanwhile, the PI fibers showed better dimensional stability than the commercial P84 fiber, and this is beneficial for its security applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43727.  相似文献   

11.
Polyamide 6 (PA6) gels were prepared by the dissolution of PA6 powder in formic acid with CaCl2 as a complexing agent. The concentration of the polymer was 16% w/v. PA6 fibers were obtained through gel‐spinning, drawing, decomplexation, and heat‐setting processes. The structure and properties of the fibers at different stages were characterized with differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The experiment results indicate that the melting transition of the as‐spun fibers obtained by the extrusion of the PA6/CaCl2/HCOOH solution into a coagulation bath through a die disappeared. A porous structure existed in the as‐spun fibers, which led to poor mechanical properties. Compared with the as‐spun fibers, the melting and glass‐transition temperatures of the decomplexed and drawn fibers retained their original values from PA6, the degree of crystallinity increased, the porous structure disappeared, and the mechanical properties were improved. The maximum modulus and tensile strength obtained from the drawn fibers in this study were 32.3 GPa and 530.5 MPa, respectively, at the maximum draw ratio of 10. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4449–4456, 2013  相似文献   

12.
Cellulose diacetate (CA)/epoxy resin (EP) blends with excellent mechanical performance were prepared with simple blending followed by curing with isophorone diamine (IPDA). The reaction between the amino groups of IPDA and epoxide groups of EP was confirmed by Fourier transform infrared spectroscopy. Scanning electron microscopy revealed that the cured EP particles gradually became larger and closer to each other to form semi‐interpenetrating polymer networks in the CA matrix; this contributed to the improved mechanical properties of the CA/EP blends. Dynamic rheological experiments indicated that the CA/EP blends with semi‐interpenetrating polymer networks retained processability. After the introduction of a low content (5–10 phr) of IPDA, the mechanical properties of the CA/EP blends were significantly enhanced. With the addition of 20–30‐phr IPDA, the CA/EP blend exhibited a tensile strength of 77 MPa, a flex strength of 65 MPa, a flex modulus of 2.6 GPa, and a hardness of 94 HD; these values were much higher than those of the pristine CA/EP binary blend. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44151.  相似文献   

13.
Amide maleic anhydride‐g‐liquid polybutadience (AMALPB) was synthesized using maleic anhydride‐g‐liquid polybutadience (MALPB) with ethylenediamine (EDA), and its structure was confirmed by FTIR and 1H‐nuclear magnetic resonance spectra, respectively. It was then used as a reactive toughening agent to make blends with diglycidyl end‐capped poly(bisphenol‐A‐co‐epichlorohydrin epoxy cured at room temperature. Their thermal decomposing behaviors did not show much difference because both EDA and AMALPB possessed similar aliphatic groups. All their glass transition temperatures (Tg) increased more than 10 °C than that of the neat epoxy, and with the addition of AMALPB, the blends were greatly strengthened upon heating as show from their storage moduli. When AMALPB was added at 10 wt %, its elongation at break increases to a maximum of 8.8% which was about two times higher than that of the neat epoxy, and its tensile strength also increased. However, the excessive addition of AMALPB resulted in an apparent decline in their tensile strength at content above 20%. The simultaneous improvements in both tensile strength and strain were attributed to the existence of well‐dispersed rubber particles in the continuous matrices performing plastic deformation that resulted from the chemical bonds of interfaces among the rubber particles and matrix, and meanwhile, inducing the deflection of the cracks. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45985.  相似文献   

14.
We modified polyimide (PI) fibers by a novel hydrolysis approach and fabricated PI‐fiber‐reinforced novolac resin (NR) composites with enhanced mechanical properties. We first used an alkaline–solvent mixture containing potassium hydroxide liquor and dimethylacetamide (DMAc) for the surface modification of the PI fibers. The results indicate that the surface roughness and structure of the PI fibers were controlled by the hydrolysis time and the content of DMAc. With the optimized hydrolysis conditions, the tensile modulus of modified PI fibers improved 15% without compromises in the fracture stress, fracture strain, or thermal stability. The interfacial shear strength between the modified PI fibers and NR increased 57%; this indicated a highly enhanced interfacial adhesion. Finally, the tensile and flexural strengths of the composites increased 72 and 53%, respectively. This research provides an effective method for the surface modification of PI fibers and expands their applications for high‐performance composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46595.  相似文献   

15.
Needleless alternating current (AC)‐electrospinning is capable of achieving high nanofiber generation rates while adding more flexibility to the process development when compared to common direct current (DC)‐electrospinning. However, AC‐electrospinning process may produce very different results than DC‐electrospinning when using the same precursors. This study demonstrated that stable AC‐electrospinning of uniform and mechanically strong polyacrylonitrile (PAN) nanofibrous meshes can be achieved at 30 ± 5 kV rms voltage when 0.75–6.0 wt % of nanocrystalline cellulose‐II with respect to PAN is added to a typical PAN precursor solution. Efficient generation (up to 2 g/h rate or 0.7 g h?1 cm?2 mass flux) of nanofibers with 250–500 nm fiber diameters has been observed when using flat fiber‐generating electrodes with diameters up to 25 mm. Depending on the amount of nanocellulose, nanofibrous nanocellulose/PAN meshes revealed large variations in tensile modulus (90–273 MPa) and yield strength (1.0–2.5 MPa), whereas the fiber diameter, air permeability, air resistance, mesh porosity, and water absorption were less affected. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45772.  相似文献   

16.
The focus of this research is the study of the microstructures and miscibility at the interface between semi‐crystalline and amorphous PLAs [poly (l ‐lactic acid)(PLLA) with poly (l ,d ‐lactic acid)(PDLLA), respectively]. The blends are prepared through thermal processing (extrusion and hot‐pressing). To increase the area of interface between PDLLA and PLLA, the fibers from PLLA and PDLLA are used. Thermal and microstructures of the blends were studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), dynamic thermogravimetric analysis(DMA), small‐angle X‐ray diffraction(SAXS) and wide‐angle X‐ray diffraction (WAXD). The two PLAs are miscible in molten state. However, phase separation is detected after various thermal treatments, with PDLLA being excluded from the regions of interlamellar PLLA regions when PDLLA content is low, as determined from X‐ray diffraction studies. The compatibility between the two PLAs is not perfect in the molten state, since enthalpies of the various blends at Tg are lower than any pure PLA material. The semi‐crystalline PLLA fiber can recrystallize alone in the molten amorphous PDLLA, and a higher nuclei density is observed at the interface. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41205.  相似文献   

17.
Two solution reactors in series were utilized to synthesize comb‐branched high‐density polyethylene (HDPE), cbHDPE, where the first reactor prepares vinyl‐terminated HDPE macromers catalyzed by an organometallic catalyst favoring beta hydride transfer and the second reactor copolymerizes HDPE macromers with ethylene using a different organometallic catalyst capable of incorporating macromers. A bimodal HDPE, biHDPE with bimodalities in molecular weight, and hexene content of the desired composition distribution was also prepared in a gas phase reactor using silica supported dual organometallic catalysts. By blending 3% solution‐made cbHDPE into the gas‐phase biHDPE, the resulting trimodal HDPE preserves the excellent stiffness and toughness of the bimodal HDPE while having exceptional melt strength and processability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45755.  相似文献   

18.
The mechanical properties of tossa jute fibers were improved by using NaOH treatment process to improve the mechanical properties of composites materials. Shrinkage of fibers during this process has significant effects to the fiber structure, as well as to the mechanical fiber properties, such as tensile strength and modulus. Isometric NaOH‐treated jute yarns (20 min at 20°C in 25% NaOH solution) lead to an increase in yarn tensile strength and modulus of ∼ 120% and 150%, respectively. These changes in mechanical properties are affected by modifying the fiber structure, basically via the crystallinity ratio, degree of polymerization, and orientation (Hermans factor). Structure–property relationships, developed for cellulosic man‐made fibers, were used with a high correlation factor to describe the behavior of the jute fiber yarns. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 623–629, 1999  相似文献   

19.
Two types of 2D nanofillers, α‐zirconium phosphate (α‐ZrP) and graphene oxide (GO), were synthesized and incorporated into poly(vinyl alcohol) (PVA) with 1 wt % loading level at various α‐ZrP:GO (Z:G = 5:1, 2:1, 1:1, 1:2, and 1:5) ratios. The resulting nanocomposites were tested for barrier properties by casting films from solution. The structure and morphology of α‐ZrP and GO were characterized by Fourier‐transform infrared spectroscopy, atomic force microscope, scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction, which demonstrated successful preparation of exfoliated α‐ZrP and GO. The physical characteristics of the nanocomposite films, including thermal, mechanical, and gas barrier properties were investigated. The results indicated that the tensile strength, Young's modulus, and elongation at break of the PVA nanocomposite films with Z:G hybrid nanofiller improved compared to neat PVA. The glass transition temperature, melting temperature, and crystallinity also increased. Consequently there appears to be a synergistic effect with these two types of nanofillers that formed a specific macro structure of a “wall.” This macrostructure resulted in excellent O2 gas barrier properties with the PVA/Z:G‐5:1 nanocomposite films having the best performance. The of the PVA/Z:G‐5:1 nanocomposite decreased from 1.835 × 10?16 to 0.587 × 10?16 cm3 cm cm?2 s?1 Pa?1 compared with neat PVA. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46455.  相似文献   

20.
The styrene–butadiene–styrene block copolymer (SBS)/polypropylene (PP) blends with a unique sandwich layered co‐continuous structure were prepared by melt compounding. Differing from single conventional co‐continuous and sandwich structure, this structure was formed, where pure PP and co‐continuous SBS/PP phase acting as the face sheets and core. Even though the volume content was 20 or 10 vol %, PP always amazingly formed a continuous phase in SBS/PP blends, whereas the morphology of SBS phase relatively changed from dispersed particles to continuous network as its content increased to 50 vol %. For immiscible SBS/PP blends, due to the huge difference of complex viscosity and surface tension between SBS and PP, a pure PP layer existed on the surface of blends which can be ascribed to the PP enrichment. Herein, the structure of blends with more than 50 vol % SBS was presented as sandwich layered co‐continuous structure by combining the pure PP layer and co‐continuous structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46580.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号