首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Starch–poly(vinyl alcohol) (PVA) blends with different compositions were prepared and crosslinked with borax by in situ and posttreatment methods. Various amounts of glycerol and poly(ethylene glycol) with a molecular weight of 400 were added to the formulations as plasticizers. The pure starch–PVA blends and the crosslinked blends were subjected to differential scanning calorimetry, thermogravimetry, and X‐ray photoelectron spectroscopic studies. Broido and Coats–Redfern equations were used to calculate the thermal decomposition kinetic parameters. The tensile strengths and elongation percentages of the films were also evaluated. The results suggested that the glass‐transition temperature (Tg) and the melting temperature strongly depended on the plasticizer concentration. The enthalpy relaxation phenomenon was dependent on the starch content in the pure blend. The crosslinked films showed higher stability and lower Tg's than pure PVA and starch–PVA blends, respectively. High‐resolution X‐ray photoelectron spectroscopy provided a method of differentiating the presence of various carbons associated with different environments in the films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1313–1322, 2005  相似文献   

2.
Blend films from nature soy protein isolates (SPI) and synthetical poly(vinyl alcohol) (PVA) compatibilized by glycerol were successfully fabricated by a solution‐casting method in this study. Properties of compatibility, mechanical properties, and thermal stability of SPI/PVA films were investigated based on the effect of the PVA concentration. XRD tests confirm that the SPI/PVA films were partially crystalline materials with peaks of 2θ = 20°. And, the addition of glycerol will insert the crystalline structure and destroy the blend microstructure of SPI/PVA. Differential scanning calorimetry (DSC) tests show that SPI/PVA blend polymers have a single glass transition temperature (Tg) between 80 and 115.0°C, which indicate that SPI and PVA have good compatibility. The tension tests show that SPI/PVA films exhibit both higher tensile strength (σb) and percentage elongation at break point (P.E.B.). Thermogravimetric analysis (TGA) and water solubility tests show that SPI/PVA blend polymer has more stable stability than pure SPI. All the results reflect that SPI/PVA/glycerol blend film provides a convenient and promising way to prepare soy protein plastics for practical application. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Three kinds of high‐molecular‐weight compatibilizers [copoly(1,4‐phenylene sulfide)‐poly(2,5‐phenylene sulfide amine)] (PPS‐NH2) containing different proportions of amino units in the side chain) were synthesized by the reaction of dihalogenated monomer and sodium sulfide via nucleophilic substitution polymerization under high pressure. The intrinsic viscosity of the obtained copolymers was 0.354–0.489 dL/g and they were found to have good thermal performance with melting point (Tm) of 271.3–281.0 °C and initial degradation temperature (Td) of 490.0–495.7 °C. There was an excellent physical compatibility between PPS‐NH2 and the pure industrial PPS. The results of dynamic mechanical analysis and macro‐ and micromechanical test showed that the selective compatibilizer PPS‐NH2 (1.0) (1.0% mol aminated ratio) can improve the mechanical and interfacial properties of polyphenylene sulfide/glass fiber (PPS/GF) composite. The macro‐optimal tensile strength, Young's modulus, bending strength, and notched impact strength of 5%PPS‐NH2 (1.0)/PPS/GF composite raised up to 141 MPa, 1.98 GPa, 203 MPa, and 6.15 kJ/m2, which increased 12.8%, 9.4%, 4.1%, and 13.8%, respectively, comparing with the pure PPS/GF composite (125 MPa, 1.81 GPa, 195 MPa, and 5.40 kJ/m2, respectively). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45804.  相似文献   

4.
Using poly(vinyl alcohol) (PVA) with highly hydrophilic properties as membrane material and poly(ethylene glycol) (PEG) as an additive, we prepared PVA/tetraethoxysilane (TEOS) ultrafiltration (UF) membranes with good antifouling properties by a sol–gel method. The PVA/TEOS UF membranes were characterized by X‐ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron microscopy, and static contact angle of measurement of water. The hybridization of TEOS to PVA for preparing the PVA/TEOS UF membranes achieved the required permeation performance and good antifouling behaviors. The morphology and permeation performance of the PVA/TEOS membranes varied with the different TEOS loadings and PEG contents. The pure water fluxes (JW) increased and the rejections (Rs) decreased with increasing TEOS loading and PEG content. The PVA/TEOS UF membrane with a PVA/TEOS/PEG/H2O composition mass ratio of 10/3/4/83 in the dope solution had a JW of 66.5 L m?2 h?1 and an R of 60.3% when we filtered it with 300 ppm of bovine serum albumin aqueous solution at an operational pressure difference of 0.1 MPa. In addition, the filtration and backwashing experiment proved that the PVA/TEOS membranes possessed good long‐term antifouling abilities. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4066–4074, 2013  相似文献   

5.
A novel series of organic-inorganic hybrid materials involving cage-like octa(3-chloroammoniumpropyl)silsesquioxane and Polyvinyl alcohol (OCAPS/PVA) were prepared via solution blending method. The obtained hybrid films were optically transparent and soluble in water. OCAPS/PVA hybrids were characterized by FT-IR, wide-angle X-ray diffraction (WAXD) scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA) and tensile test. The results showed that the hydrogen bond interactions were formed between OCAPS and PVA. OCAPS could be dispersed well in PVA matrix till its content was 10 wt%, while the aggregation and crystallization of OCAPS were observed when the content was up to 15 wt%. The glass transition temperature (T g ) of OCAPS/PVA was found to increase from 53 °C to 60 °C, and the melting temperature (T m ) decreased from 180 °C to 171 °C with increasing OCAPS content from 0 wt% to 15 wt%. The thermal stability of PVA main chain was improved by the addition of OCAPS and the thermal residue ratio also increased. The tensile strength of OCAPS/PVA decreased from 28 MPa to 19 MPa, while the elongation at break of hybrid films increased from 121% to 175%.  相似文献   

6.
This study uses the solution mixing method to combine plasticized polyvinyl alcohol (PVA) as a matrix, and multiwalled carbon nanotubes (MWCNTs) as reinforcement to form PVA/MWCNTs films. The films are then laminated and hot pressed to create PVA/MWCNTs composites. The control group of PVA/MWCNTs composites is made by incorporating the melt compounding method. Diverse properties of PVA/MWCNTs composites are then evaluated. For the experimental group, the incorporation of MWCNTs improves the glass transition temperature (Tg), crystallization temperature, Tc), and thermal stability of the composites. In addition, the test results indicate that composites containing 1.5 wt % of MWCNTs have the maximum tensile strength of 51.1 MPa, whereas composites containing 2 wt % MWCNTs have the optimal electrical conductivity of 2.4 S/cm, and electromagnetic shielding effectiveness (EMI SE) of ?31.41 dB. This study proves that the solution mixing method outperforms the melt compounding method in terms of mechanical properties, dispersion, melting and crystallization behaviors, thermal stability, and EMI SE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43474.  相似文献   

7.
In this study, we focused on the fabrication of poly(vinyl alcohol) (PVA)/poly(vinyl pyrrolidone) (PVP)/sericin composites via a simple solution‐blending method. The composites were characterized by Fourier transform infrared (FTIR) spectroscopy, UV spectroscopy, X‐ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis (TGA), and measurements of the conductivity, tensile strength, and antibacterial activity against Staphylococcus aureus. The results of FTIR and UV spectroscopy implied the occurrence of hydrogen bonding between sericin and the PVA/PVP blend. The structure and morphology, studied by XRD and SEM, revealed that the sericin particles were well dispersed and arranged in an orderly fashion in the blend. The glass‐transition temperature (Tg) of the composite was higher than that of the pure blend, and the Tg value shifted toward higher temperatures when the volume fraction of sericin increased. TGA indicated that sericin retarded the thermal degradation; this depended on the filler concentration. The mechanical and electrical properties, such as the tensile strength, alternating‐current electrical conductivity, dielectric constant, and dielectric loss of the composites, were higher than those of the pure blend, and these properties were enhanced when the concentration of sericin was increased up to 10 wt % filler content, whereas the elongation at break of the composite decreased with the addition of sericin particles. The antibacterial properties of the composite showed that sericin had a significant inhibitory effect against S. aureus. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43535.  相似文献   

8.
Water-dispersible hydrolyzed Kevlar nanofibers (hANFs) prepared by acid-assisted hydrothermal treatments of Kevlar nanofibers (ANFs) were first incorporated into carboxylated acrylonitrile butadiene rubber (XNBR) by a latex co-coagulation method. The obtained hANFs maintained the one-dimensional nanofibrous morphology and crystal structure as ANFs. There were amounts of polar groups appearing at the end of hANFs molecular chains after hydrothermal process, which led to the strong hydrogen bonding interaction between the filler and XNBR matrix. The results indicated that hANFs had significant reinforcement effects on the mechanical properties, crosslink density, and thermal stability of XNBR matrix. In comparison with those of neat XNBR, the tensile strength, tear strength, crosslink density, and maximum heat decomposition temperature (Tmax) of XNBR/hANFs nanocomposites filled with 7 phr hANFs increased by 236%, 161%, 35%, and 19.64 °C, respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47698.  相似文献   

9.
The addition of silica nanoparticles and poly(vinyl alcohol) (PVA) to polysulfone (PSF) membranes was used to modify the membrane morphology and enhance membrane performance. The central composite design of the response surface methodology was used to predict the maximum permeability and real salt rejection (Rreal) of the PSF membranes. The factors affecting the permeability and Rreal values of the PSF membranes were the silica (0–12 wt % PSF) and PVA (0–2 wt % PSF) contents. The optimized responses, membrane permeability, and Rreal obtained experimentally were 61.9260 L m−2 h−1 bar−1 and 97.5850%, respectively, with deviation from the predicted values of 34.72 and 15.84%, respectively. In the further characterization, the contact angle results showed that PVA was important in stabilizing the nanoparticle surfaces to prevent agglomeration in the polymeric matrix. The tensile strength test confirmed that the addition of silica nanoparticles improved the mechanical strength of the PSF membranes. However, the addition of PVA had a weakening effect on the mechanical strength of the PSF membranes. The addition of silica nanoparticles and PVA affected the typical asymmetric structures of the PSF membrane less, as shown in the scanning electron micrographs. This may have been due to the good incorporation of additives in the PSF membranes, as observed from the energy‐dispersive X‐ray and Fourier transform infrared spectroscopy results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 Liver Transpl, 2011. © 2011 AASLD.  相似文献   

10.
In order to improve the properties of bamboo-plastic composites (BPCs), bamboo flour/high-density polyethylene (HDPE) composites were reinforced with ultrahigh molecular weight polyethylene (UHMWPE). The effects of UHMWPE on properties of composites were studied. The crystallinity of composites decreased slightly. Compared with non-UHMWPE added bamboo powder/HDPE composite, the composite with 6 wt % UHMWPE, showed decrease in water absorption to 0.41%, whereas its tensile strength and flexural strength increased to 34.51 and 25.88 MPa, respectively, a corresponding increase of 34.59 and 12.87%. The temperatures corresponding to initial degradation temperature (Tinitial) and maximum degradation temperature (Tmax) of the composite increased from 282.7 and 467.4 °C to 288.5 and 474.7 °C respectively. Scanning electron microscopic images showed that UHMWPE was well dispersed and fully extended as long fibers in the composite, forming a “three-dimensional physically cross-linked network structure,” which contributed to the improved properties of the composites. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48971.  相似文献   

11.
Tetracycline hydrochloride loaded poly(vinyl alcohol)/soybean protein isolate/zirconium (Tet–PVA/SPI/ZrO2) nanofibrous membranes were fabricated via an electrospinning technique. The average diameter of the PVA/soybean protein isolate (SPI)/ZrO2 nanofibers used as drug carriers increased with increasing ZrO2 content, and the nanofibers were uneven and tended to stick together when the ZrO2 content was above 15 wt %. The Tet–PVA/SPI/ZrO2 nanofibers were similar in morphology when the loading dosage of the model drug tetracycline hydrochloride was below 6 wt %. The PVA, SPI, and ZrO2 units were linked by hydrogen bonds in the hybrid networks, and the addition of ZrO2 improved the thermostability of the polymer matrix. The Tet–PVA/SPI/ZrO2 nanofibrous membranes exhibited good controlled drug‐release properties and antimicrobial activity against Staphylococcus aureus. The results of this study suggest that those nanofibrous membranes were suitable for drug delivery and wound dressing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40903.  相似文献   

12.
We have successfully prepared a series of blend membranes from cellulose and soy protein isolate (SPI) in NaOH/thiourea aqueous solution by coagulating with 5 wt % H2SO4 aqueous solution. The structure and properties of the membranes were characterized by Fourier transform infrared spectroscopy, ultraviolet‐visible spectrometry, dynamic mechanical thermal analysis, scanning electron microscopy (SEM), transmission electron microscopy, and tensile testing. The effects of SPI content (WSPI) on the structure and properties of the blend membranes were investigated. The results revealed that SPI and cellulose are miscible in a good or a certain extent when the SPI content is less than 40 wt %. The pore structure and properties of the blend membranes were significantly improved by incorporation of SPI into cellulose. With an increase in WSPI from 10 to 50 wt %, the apparent size of the pore (2re) measured by SEM for the blend membranes increased from 115 nm to 2.43 μm, and the pore size (2rf) measured by the flow rate method increased from 43 to 59 nm. The tensile strength (σb) and thermal stability of the blend membranes with lower than 40 wt % of WSPI are higher than that of the pure cellulose membrane, owing to the strong interaction between SPI and cellulose. The values of tensile strength and elongation at break for the blend membranes with 10 wt % of WSPI reached 136 MPa and 12%, respectively. The blend membranes containing protein can be used in water because of keeping σ of 10 to 37 MPa. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 748–757, 2004  相似文献   

13.
In present work, novel phthalonitrile end-capping poly(arylene ether nitrile)-phenyl (PEN-Ph) films with excellent mechanical properties as well as high glass transition temperature were prepared through blending high-molecular-weight PEN-Ph (HMW PEN-Ph) and low-molecular-weight PEN-Ph (LMW PEN-Ph). Then, the thermal and mechanical properties of the samples with different mass ratio of HMW PEN-Ph and LMW PEN-Ph were studied, and the effect of heat-treatment temperature on the performance of films was also investigated. The analysis results indicate that the crosslinking density as well as film formation can be controlled by adjusting the mass ratio of HMW PEN-Ph to LMW PEN-Ph. Besides, when the mass ratio of HMW PEN-Ph to LMW PEN-Ph is 5:2, the film treated at 340 °C possesses the best thermal and mechanical properties, with Tg of 218.9 °C and tensile strength of 104.8 MPa, increased by 10.9 °C and 16.6 MPa than pure HMW PEN-Ph film, respectively. Thus, the presence of LMW PEN-Ph makes the thermal and mechanical properties of the films improve dramatically, providing the possibility for the application in the electronics and high-temperature resistant fields. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48457.  相似文献   

14.
Fully bio‐based soy protein isolate (SPI) resins were toughened using natural rubber (NR) and epoxidized natural rubber (ENR). Resin compositions containing up to 30 wt % NR or ENR were prepared and characterized for their physical, chemical and mechanical properties. Crosslinking between SPI and ENR was confirmed using 1H‐NMR and ATR‐FTIR. All SPI/NR resins exhibited two distinctive drops in their modulus at glass transition temperature (Tg ) and degradation temperature (Td ) at around ?50 and 215 °C, corresponding to major segmental motions of NR and SPI, respectively. SPI/ENR resins showed similar Tg and Td transitions at slightly higher temperatures. For SPI/ENR specimens the increase in ENR content from 0 to 30 wt % showed major increase in Tg from ?23 to 13 °C as a result of crosslinking between SPI and ENR. The increase in ENR content from 0 to 30 wt % increased the fracture toughness from 0.13 to 1.02 MPa with minimum loss of tensile properties. The results indicated that ENR was not only more effective in toughening SPI than NR but the tensile properties of SPI/ENR were also significantly higher than the corresponding compositions of SPI/NR. SPI/ENR green resin with higher toughness could be used as fully biodegradable thermoset resin in many applications including green composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44665.  相似文献   

15.
In this study, the properties of poly (vinyl alcohol) (PVA) films incorporated with Zataria multiflora essential oil (ZMO) as a potential antioxidant/antibacterial material was investigated. PVA films were prepared from PVA solutions (2% w/v) containing different concentrations of ZMO. Water solubility, moisture absorption, water swelling, and water vapor permeability for pure PVA films were 57 ± 1.1, 99 ± 3.2%, 337 ± 8%, and 0.453 ± 0.015 g mm/m2 h, respectively. Incorporation of ZMO into PVA films caused a significant decrease in water swelling and moisture absorption and increase in solubility and water vapor permeability. Tensile strength, elastic modulus, and elongation at break for pure PVA films were 13.5 ± 0.61 MPa, 15.2 ± 0.8 MPa, and 216 ± 4%, respectively. Incorporation of ZMO into the PVA films caused a significant decrease in tensile strength and elastic modulus and increase in elongation at break of the films. Pure PVA film showed UV‐visible light absorbance ranging from 280 to 440 nm with maximum absorbance at 320 nm. Addition of ZMO caused a significant increase in light absorbance and opacity. PVA films exhibited no antioxidant and antifungal activities, whereas PVA/ZMO films exhibited excellent antioxidant and antifungal properties. Although the bioactivity PVA films were improved by the addition of ZMO, however, the mechanical properties and water binding capacity of the films were weaken slightly. Thus, ZMO emulsified in the ethanol not compatible with PVA matrix and more suitable emulsifier was needed in order to obtain strong film with higher mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40937.  相似文献   

16.
In this study, a series of aliphatic–aromatic poly(butylene terephthalate‐co‐ε‐caprolactone) (PBTCL) copolyesters were synthesized from various monomeric compositions of terephthalic acid (TPA), 1,4‐butanediol (BDO), and ε‐caprolactone (CL) in the presence of tetrabutyl titanate (Ti(Obu)4) and stannous octoate (Sn(Oct)2) as catalysts through a combination of polycondensation and ring opening polymerization. A significant increase in the melting temperature (Tm) of copolyesters was observed by increasing the TPA/(CL+TPA) molar ratio, starting from the low end (Tm 66.2°C) of pure poly‐ε‐caprolactone PCL upward. We found that PBTCL‐50, which has a TPA/(CL+TPA) 50% molar ratio and polycondensation at 260°C for 1.5 h, resulted in a proper Tm of 139.2°C that facilitates thermal extrusion from biomass or other biodegradable polymers of similar Tm. The number–average molecular weight (Mn) of 7.4 × 104 for PBTCL‐50 was determined from the intrinsic viscosity [η] by using the Berkowitz model of Mn = 1.66 × 105[η]0.9. Good mechanical properties of PBTCL‐50 have been shown by tensile stretching experiment that indicates tensile strength, elongation, and Young's modulus are 11.9 MPa, 132%, and 257 MPa, respectively. Polymers with aforementioned properties are suitable for manufacturing biodegradable plastic films for downstream agricultural applications or merely for trash bag. This article reveals that the PBTCL‐50 contains all five monomers with different molar ratios and characteristical linkages between each other. The novel structure was furthermore analyzed by 1H‐ and 13C‐NMR spectroscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Novel hybrid glass fiber reinforced polyester composites (GFRPCs) filled with 1‐5 wt % microsized zirconia (ZrO2) particles, were fabricated by hand lay‐up process followed by compression molding and evaluated their physical, mechanical and thermal behaviors. The consumption of styrene in cured GFRPCs was confirmed by Fourier transform infrared spectroscopy. The potential implementation of ZrO2 particles lessened the void contents marginally and substantially enhanced the mechanical and thermal properties in the resultant hybrid composites. The GFRPCs filled with 4 wt % ZrO2 illustrated noteworthy improvement in tensile strength (66.672 MPa) and flexural strength (67.890 MPa) while with 5 wt % ZrO2 showed 63.93% rise in hardness, respectively, as compared to unfilled GFRPCs. Physical nature of polyester matrix for composites and an improved glass transition temperature (Tg) from 103 to 112 °C was perceived by differential scanning calorimetry thermograms. Thermogravimetric analysis revealed that the thermal stability of GFRPCs was remarkably augmented with the addition of ZrO2. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43615.  相似文献   

18.
Terpolymers of N‐cyclohexylmaleimide, methylmethacrylate, and acrylonitrile (AN) at different AN feed content were synthesized by suspension polymerization. The thermal properties of the terpolymers such as glass transition temperature (Tg) and Vicat softening temperature (TVicat) were determined by torsion braid analysis and Vicat softening temperature tester, respectively. The value of Tg and TVicat decreased with increasing AN feed content. Thermogravimetric analyses were carried out with the results that the incorporated AN units enhanced the thermal stability of the resulting polymers and a second degradation step appeared with the addition of AN. The mechanical properties (tensile strength and impact strength) of the terpolymers were also detected and the results show that the tensile strength and impact strength of terpolymers increase with increasing AN feed content. The rheological results illustrated that the terpolymers showed rheological behavior similar to that of pseudoplastic liquid. The apparent shear viscosity decreased with the increasing of AN feed content. The flow power index n increased with increasing AN feed content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 792–796, 2007  相似文献   

19.
A highly branched polystyrene (HBPS) was synthesized via the copolymerization of 4‐(chloromethyl) styrene with styrene using the self‐condensing atom transfer radical polymerization method. The addition of HBPS as a melt modifier for polycarbonate (PC) was attempted. Melt flow properties, mechanical properties, thermal properties and morphology of the blends were studied. The results showed that a significant drop in the blend viscosity occurs immediately on addition of HBPS. Impact strength, tensile strength and glass transition temperature (Tg) of all the blends have not been significantly reduced compared with those of pure PC. The TGA analyses showed that an initial weight loss temperature of all the blends is above 458 °C and slightly low compared with that of pure PC, but all the blends still have excellent thermal stability. Morphological studies using SEM showed that a two‐phase morphology is characteristic of all the blends, with more or less spherical droplets of the minor HBPS phase dispersed in the continuous PC phase. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Polymer blend systems offer a versatile approach for tailoring the properties of polymer materials for specific applications. In this study, we investigated the compatibility of polybutylene terephthalate (PBT) and poly(ethylene glycol) (PEG) blends processed using a twin-screw extruder, with the aim of enhancing their compatibility. Phthalic anhydride (PAn) and phthalic acid (PAc) were used as potential compatibilizers at different concentrations to improve interfacial interactions between PBT and PEG. Blend morphologies were characterized using scanning electron microscopy, which revealed improved interfacial compatibility and reduced phase separation with the incorporation of small amounts of PAn and PAc. Differential scanning calorimetry analysis indicated changes in the melting temperature (Tm) and glass transition temperature (Tg) of the blends owing to the compatibilizing effects of PAn and PAc. Dynamic mechanical analysis further corroborated the influence of the compatibilizers on the Tg and viscoelastic behavior. Thermogravimetric analysis demonstrated enhanced thermal stability with the addition of either PAn or PAc. Rheological measurements indicated an increase in complex viscosity with increasing compatibilizer content, indicating improved compatibility. The degradation point (Td) of PBT/PEG blend increased from 158 to 200 and 319°C with the incorporation of 5 phr PAn and 2 phr PAc, respectively. Mechanical properties, including tensile strength, Young's modulus, and Izod impact strength, were evaluated. For instance, the tensile strength of PBT/PEG blend was enhanced from 43.5 to 48.7 and 49.7 MPa by incorporating 5 phr PAn and 2 phr PAc, respectively. However, the impact strength of PBT/PEG blend increased from 3.0 to 4.3 and 4.2 kJ/m2 with the addition of 1 phr PAn and 1 phr PAc, respectively. The findings demonstrated that adding 5 phr PAn or 2 phr PAc to the PBT/PEG blends was advantageous, achieving a harmony of performance benefits and compromises. Rheological observations contributed significantly to the mechanical and thermal properties. Overall, the study highlights the significance of utilizing PAn and PAc as effective compatibilizers for enhancing the properties of PBT/PEG blends, making them potential candidates for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号