首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid fillers of mono‐amine polyhedral oligomeric silsesquioxane/nanosized boron nitride (NH2‐POSS/n‐BN) were performed to fabricate NH2‐POSS/n‐BN/epoxy nanocomposites. Results revealed that the dielectric constant and dielectric loss values were decreased with the increasing addition of NH2‐POSS obviously, but increased with the increasing addition of BN fillers. For a given loading of NH2‐POSS (5 wt %), the thermal conductivities of NH2‐POSS/n‐BN/epoxy nanocomposites were improved with the increasing addition of n‐BN fillers, and the thermal conductivity of the nanocomposites was 1.28 W/mK with 20 wt % n‐BN fillers. Meantime, the thermal stability of the NH2‐POSS/n‐BN/epoxy nanocomposites was also increased with the increasing addition of n‐BN fillers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41951.  相似文献   

2.
The structural properties of completely condensed and incompletely condensed silsesquioxane in the polyurethane nanocomposites containing 17.5 wt % of silsesquioxane was investigated by FTIR, TGA, scanning electron microscopy (SEM), X‐ray diffraction (XRD), and DMA techniques. FTIR spectra shows the existence of hydrogen bonding in the PU‐POSS system. The intensity of hydrogen bonding decreases with the increase in POSS‐H loading suggesting the prevention of the formation of hydrogen bonding by the addition of POSS‐H molecule. SEM analysis reveals the incompatibility of POSS‐H molecule in the PU matrices exhibiting greater extent of phase separation and a large number of POSS aggregates on the addition of POSS‐H molecule in the PU‐POSS matrices. The TGA thermograms show that the POSS‐PU hybrids possess excellent thermal stabilities. However, the incorporation of POSS‐H molecule leads to a decrease in the thermal properties and only the char yield values increase with the increase in the POSS‐H content in the PU‐POSS hybrids. The XRD pattern reveals that the crystalline structure of POSS molecules are destroyed by the polymer matrices in the PU‐POSS hybrid films. The decrease in the bending storage modulus E′ values with the increase in the POSS‐H content proves the retardation of hydrogen bonding formation by the POSS‐H molecule in the PU‐POSS hybrid. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Multifunctional transparent composite films with high dielectric permittivity (high‐k), breakdown strength, and mechanical properties are urgently required by cutting‐edge fields. Herein, novel multifunctional films were facilely prepared through building unique cross‐linked structure based on epoxy resin (EP) and polyacrylonitrile (PAN)‐lithium trifluoromethane sulfonate (LiTf) complex. Compared with high‐k materials reported previously, EP/(PAN‐LiTf) films simultaneously show very high transparency, good flexibility, high tensile, and breakdown strengths. For 0.22EP/(PAN‐LiTf) film with 22 wt % EP, its average transmittance and elongation at break are as high as 91% (600–800 nm) and 12.7%, respectively; moreover, its dielectric permittivity, AC breakdown strength and the maximum energy density are severally about 4.9, 1.8, and 15.2 times of those of EP resin, completely overcoming the sticky problems in conductor/polymer composites. The origin behind these attractive properties is intensively discussed, and believed to be attributed to the unique structure of EP/(PAN‐LiTf) films. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45218.  相似文献   

4.
Two types of nanocomposites have been fabricated by a ball‐milling technique. The first type consists of untreated titanium dioxide (TiO2) incorporated into low‐density polyethylene (LDPE). For the second one, TiO2 filler chemically treated with trisilanol phenyl–polyhedral oligomeric silsesquioxane (TP–POSS) as compatibilizing agent was ball‐milled with LDPE. All specimens were tested by microstructure analysis and thermal, dielectric characterization techniques. Microstructure analysis by atomic force microscopy and scanning electron microscopy show clearly an increased dispersion in presence of POSS. Scanning electron microscopy even shows the formation of a particular structure due possibly to interactions between functionalization. It was observed that the modification of the surface of TiO2 by the POSS decreased the dielectric loss. All nanocomposites containing treated TiO2 revealed an improvement in thermal conductivity, with the most distinct value of 19% in case of LDPE containing 5 wt % treated TiO2. The incorporation of TiO2 fillers seems to reduce the dielectric breakdown strength of the nanocomposites. However, nanocomposites containing 3 and 5 wt % treated TiO2 have exhibited a slightly enhancement in dielectric breakdown strength up to 5%. The improvement in surface resistance to partial discharge was found in all nanocomposites specimens, especially for both types of composite containing 7 wt % untreated and treated TiO2. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46095.  相似文献   

5.
A series of optically transparent ZnS‐poly(vinylpyrrolidone) (PVP) nanocomposite films with high refractive indices and high Abbe numbers have been prepared. Mercaptoethanol (ME) capped ZnS nanoparticles (NPs) were introduced into the PVP polymer matrix via simple blending with high nanophase contents. ME‐ZnS NPs of around 3 nm were prepared from zinc acetate and thiourea precursors in N,N‐dimethylformamide using ME as a capping agent. Transparent nanocomposite films with high refractive indices and high Abbe numbers can be easily prepared by a conventional film casting method. TGA results indicated that the ZnS/PVP nanocomposite films exhibit good thermal stability and the measured contents of ZnS NPs in the films agree well with the theoretical values. The refractive indices and the Abbe numbers of the ZnS/PVP nanocomposite films range from 1.5061 to 1.7523 and 55.6 to 20.4 with the content of ME‐ZnS NPs varied between 0 and 80 wt %, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The study aims to produce poly(methyl methacrylate) (PMMA)-based lower density syntactic foams with hollow glass microspheres (HGMs) and to improve their mechanical properties by the addition of polyhedral oligomeric silsesquioxanes (POSSs) while maintaining the thermal properties of the neat polymer. First to understand the effect of POSS addition, PMMA–POSS composites with octaisobutyl and octaphenyl POSS were produced through extrusion. Higher relative flexural and impact strengths were obtained with POSS addition to PMMA. Obtaining more enhanced properties with octaphenyl POSS, PMMA-HGM-POSS hybrid syntactic foams were prepared with this additive. In general, the specific flexural strength and modulus of the PMMA syntactic foams were improved with the POSS loading, while the lower density and thermal properties of the PMMA syntactic foams were maintained. PMMA hybrid syntactic foams with 15 wt % HGMs and 0.25 wt % POSS exhibited 37.6% improvement in the specific flexural modulus with respect to the neat PMMA. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48368.  相似文献   

7.
A systematic study of the reinforcement of single‐walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes, and vapor‐grown carbon nanofibers (VGCNFs) in poly(methyl methacrylate) (PMMA) is reported. SWNT/PMMA composite films with various SWNT concentrations (from 0.5 to 50 wt % with respect to the weight of PMMA) were processed from nitromethane. Two types of SWNTs were used: SWNT‐A, which contained 35 wt % metal catalyst, and SWNT‐B, which contained about 2.4 wt % metal catalyst. Properties of different nanotubes containing composites were compared with 15 wt % carbon nanotubes (CNTs). Property enhancement included electrical conductivity, mechanical properties, and solvent resistance. The thermal degradation of PMMA in the presence of CNTs in air and nitrogen environments was studied. No variation in the thermal degradation behavior of PMMA/CNT was observed in nitrogen. The peak degradation temperature increased for the composites in air at low CNT loadings. Dynamic and thermomechanical properties were also studied. At a 35 wt % SWNT loading, a composite film exhibited good mechanical and electrical properties, good chemical resistance, and a very low coefficient of thermal expansion. Property improvements were rationalized in terms of the nanotube surface area. Composite films were also characterized with Raman spectroscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
In this study, poly(methyl methacrylate) (PMMA)/carbon black (CB), PMMA/carbon fiber (CF), and PMMA/carbon nanotube (CNT) conductive composite films with different filler concentrations are prepared using the solution casting technique. Both perpendicular and in‐plane direction conductivity of all the binary composite films are investigated, percolation thresholds (?c) of both directions of PMMA/CB, PMMA/CF, and PMMA/CNT composite films are investigated and the experimental data are fitted using McLachlan’s equation. For all the three investigated films, the perpendicular ?c,⊥ and in‐plane ?c,∥ with different fillers show totally different behaviors. Pristine CB, CF, and CNT as well as PMMA/CB, PMMA/CF, and PMMA/CNT composite films are discussed. The gravity effect of the fillers is found to be most significant in the PMMA/CB system. A schematic diagram of PMMA composite films with CB, CF, and CNT as filler prepared from solution casting process is presented to explain the distribution gradient of the fillers in the perpendicular direction of the film after solution casting. A power law behavior is revealed for different filler types (CB, CF, CNT) correlating the exponent t for McLachlan’s equation and corresponding ?c for in‐plane and perpendicular directions.  相似文献   

9.
This article reports an investigation into the miscibility and morphology of octaisobutyl‐substituted polyhedral oligomeric silsesquioxane (ibPOSS) nanocages over a wide concentration range (25–75 wt%) in polymer matrices, produced by solution blending. Three different, strategically chosen polymers were used: polystyrene (PS), poly(isobutyl methacrylate) (PIBMA), and poly(methyl methacrylate) (PMMA), to allow the effect of matrix structure and polarity on miscibility to be investigated. Differential scanning calorimetry, dynamic mechanical analysis, X‐ray diffraction, and scanning electron microscopy were used to characterize the composite systems. The Tg of PMMA and PIBMA were found to increase with introduction of ibPOSS, whereas PS did not show any significant change of Tg with increasing POSS content, indicating differing degrees of interaction. The phase separation has been found and a cubic POSS crystal structure has been observed in all blends with different size. The glass transition increased with concentration, even though all compositions were predominantly phase‐separated, and we suggest that this is due to the influence of the external face of the crystalline units on the polymer chains, and possibly some polymer contained within the crystalline POSS phase. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

10.
A series of poly(methyl methacrylate) (PMMA)/octavinyl polyhedral oligomeric silsesquioxane (POSS) blends were prepared by the solution‐blending method and characterized with Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. The glass‐transition temperature (Tg) of the PMMA–POSS blends showed a tendency of first increasing and then decreasing with an increase in the POSS content. The maximum Tg reached 137.2°C when 0.84 mol % POSS was blended into the hybrid system, which was 28.2°C higher than that of the mother PMMA. The X‐ray diffraction patterns, transmission electron microscopy micrographs, and Fourier transform infrared spectra were employed to investigate the structure–property relationship of these hybrid nanocomposites and the Tg enhancement mechanism. The results showed that at a relatively low POSS content, POSS as an inert diluent decreased the interaction between the dipolar carbonyl groups of the homopolymer molecular chains. However, a new stronger dipole–dipole interaction between the POSS and the carbonyl of PMMA species formed at the same time, and a hindrance effect of nanosize POSS on the motion of the PMMA molecular chain may have played the main role in the Tg increase of the hybrid nanocomposites. At relatively high POSS concentrations, the strong dipole–dipole interactions that formed between the POSS and carbonyl groups of the PMMA gradually decreased because of the strong aggregation of POSS. This may be the main reason for the resultant Tg decrease in these hybrid nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
In this study, the poly(methyl methacrylate/polystyrene (PMMA/PS) core‐shell composite latex was synthesized by the method of soapless seeded emulsion polymerization. The morphology of the PMMA/PS composite latex was core‐shell structure, with PMMA as the core and PS as the shell. The core‐shell morphology of the composite polymer latex was found to be thermally unstable. Under the effect of thermal annealing, the PS shell region first dispersed into the PMMA core region, and later separated out to the outside of the PMMA core region. This was explained on the basis of lowing interfacial tension between the PMMA and PS phases owing to the interpenetration layer. The interpenetration layer, which was located at the interface of the core and shell region, contained graft copolymer and entangled polymer chains. Both the graft copolymer and entangled polymer chains had the ability to lower the interfacial tension between the PMMA and PS phases. Also, the effect of thermal annealing on the morphology of commercial polymer/composite latex polymer blends was examined. The result showed that the core‐shell composite latex had the ability to enhance the compatibility of the components of polymer blends. The compatibilizing ability of the core‐shell composite latex was better than that of a random copolymer. Moreover, the effect of the amount of core‐shell composite latex on the morphology of the polymer blend was investigated. The polymer blends, which contained composite latex above 50% wt, showed the morphology of a double sea‐island structure. In addition, the composite latex was completely dissolved in solvent to destroy the core‐shell structure and release the entangled polymer chains, and then dried to form the entangled free composite polymer. The entangled free composite polymer had the ability to enhance the compatibility of the components of the polymer blend as usual. The weight ratio 3/7 commercial polymer/entangled free composite polymer blend showed the morphology of the phase inversion structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 312–321, 2003  相似文献   

12.
A series of graphene nanosheets‐filled poly(methyl methacrylate) nanocomposites (GNS/PMMA) is successfully prepared by an in situ fast polymerization method with graphene weight fractions from 0.1 to 2.0 wt %. In situ polymerization is effective in well dispersing of GNS in matrixes and suitable for both low and high content of GNS. The synthesis processes of polymer composites could be simplified and fast by using industrial grade graphene. The GNS fillers are found to disperse homogeneously in the PMMA matrix. The maximum electrical conductivity of the composites achieves 0.57 S m?1, with an extremely low percolation threshold of 0.3 wt %. The electrical conductivities are further predicted by percolation theory and found to agree well with the experimental results. The results indicate that the microstructures, thermal, electrical, and mechanical properties of PMMA polymer are significantly improved by adding a low amount of graphene nanosheets. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43423.  相似文献   

13.
In this work, we prepared a series of poly(vinylidene fluoride) (PVDF)–surface functionalized BiFeO3 (h‐BFO)–Sodium dodecyl sulfate (SDS) composite films by solvent casting method to investigate the effect of SDS in the composites. The X‐ray diffraction confirmed that the structure of h‐BFO significantly changed in the PVDF‐(h‐BFO)‐SDS composite in comparison with the rhombohedral structure of pure BiFeO3. The microscopic study illustrated that the composite with a higher percentage of SDS content facilitated the dispersion as well as proper distribution of ceramic particles in the polymer matrix. The presence of different functionalities of respective polymer and the modified fillers was confirmed by FTIR Spectrophotometer. The dielectric and electrical study done by Impedance Analyzer revealed that the SDS treated surface functionalized composites showed relatively higher dielectric properties than that of two phase composites and pure polymer. Finally, the ferroelectric properties of the composite films done by P‐E loop tracer revealed that the SDS‐treated composites showed an enhanced remanent polarization. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45040.  相似文献   

14.
The application of octatrimethylsiloxy polyhedral oligomeric silsesquioxane (POSS) nanoparticles was investigated in the fabrication of novel reverse‐selective poly(4‐methyl‐2‐pentyne) (PMP) nanocomposite membranes for the separation of heavier hydrocarbons from methane. Generally, PMP and PMP–fumed silica (FS) nanocomposite membranes suffer severe physical aging with approximately 40% permeation flux reduction over 120 days. A straightforward strategy was introduced to suppress the physical aging of PMP and also to improve the thermal stability without compromising the selectivities and permeabilities through the incorporation of a functionalized POSS–FS binary filler system. Fourier transform infrared spectroscopy and scanning electron microscopy proved productive interactions between the fillers and polymer, with a fair compatibility between them. Thermogravimetric analysis confirmed that the thermal stability of the neat PMP was enhanced by the incorporation of the fillers into the nanocomposites. The addition of POSS and FS led to improved operational performance, such as in the permeability and selectivity, over the neat PMP. The permeation stabilities of the PMP–POSS and PMP–FS–POSS nanocomposite membranes were clearly improved over a long time (120 days). The permeation data indicated that the PMP–3 wt % POSS–20 wt % FS nanocomposite membrane is promising for C3H8/N2 and C3H8/CH4 separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45158.  相似文献   

15.
The thermal conductivity of insulating polymers can be increased by the addition of conductive fillers. One potential market for these thermally conductive resins is for fuel cell bipolar plates. In this study, various amounts of three different carbon fillers (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX liquid crystal polymer. Because the resulting composites were anisotropic, they were tested for both through‐plane and in‐plane thermal conductivities. The effects of single fillers and combinations of the different fillers were studied via a factorial design. Each single filler caused a statistically significant increase in composite through‐plane and in‐plane thermal conductivities at the 95% confidence level, with synthetic graphite causing the largest increase. All of the composites containing combinations of the different fillers caused statistically significant increases in the composite through‐plane and in‐plane thermal conductivities. It is possible that thermally conductive pathways were formed that linked these carbon fillers, which resulted in increased composite thermal conductivity. Composites containing 70, 75, and 80 wt % synthetic graphite and the composite containing all three fillers (2.5 wt % carbon black, 65 wt % synthetic graphite, and 5 wt % carbon fiber) had in‐plane thermal conductivities of 20 W m?1 K?1 or higher, which is desirable for bipolar plates. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The environmentally friendly esterification of acetosolv lignin (AL), obtained from pressed oil palm mesocarp fibers, is described, for the improvement of thermo‐oxidative properties of poly(methyl methacrylate) (PMMA) films. Acetylation of AL was performed in ecofriendly conditions using acetic anhydride in the absence of catalysts. Acetylated acetosolv lignin (AAL) was successfully obtained in only 12 min with a solvent‐free and catalyst‐free microwave‐assisted procedure. Lignins were characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), confirming the efficacy of the methodology employed. AL and AAL as fillers in different concentrations (1% and 5%) were added to PMMA films. The thermal and mechanical properties of the lignin‐incorporated films were analyzed by TGA, DSC, and dynamic mechanical analysis (DMA). The films incorporated with lignin and acetylated lignin presented initial degradation temperature (Tonset) and onset oxidative temperature (OOT) values higher than pure PMMA films, contributing thus to an enhancement of thermo‐oxidative stability of PMMA. The DMA analyses showed that incorporation of AL or AAL increased the storage modulus (E′) of PMMA films, but did not affect their glass‐transition temperatures (Tg). The results indicate the potential use of oil palm mesocarp lignin to enhance the thermo‐oxidative properties of PMMA without compromising its mechanical response. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45498.  相似文献   

17.
A novel organic–inorganic hybrid of epoxycyclohexyl polyhedral oligomeric silsesquioxane (e‐POSS)–grafted carboxylic methoxypolyethylene glycols (mPEG‐COOH), that is, a POSS‐mPEG graftomer, was synthesized. The grafting reaction of e‐POSS and mPEG‐COOH was characterized by Fourier transform infrared (FTIR) and 1H‐NMR spectroscopy. Then the graftomer was used to develop new composite solid polymer electrolyte (SPE) films with a carboxylated nitrile rubber–epoxidized natural rubber (XNBR‐ENR) self‐crosslinked blend system as a dual‐phase polymer matrix. The self‐crosslinked reaction of the XNBR‐ENR matrix was investigated using ATR‐FTIR. The morphology of the SPE films and the distribution of lithium salt were investigated using field emission scanning electron microscopy and X‐ray diffraction, and the result illustrated that the addition of POSS‐mPEG could promote and accelerate the dissociation of LiClO4. The best effect within the range of this study was achieved when 25 phr POSS‐mPEG was involved. The differential scanning calorimetry analysis proved that the glass‐transition temperature of the composite SPE films was reduced with the increase of POSS‐mPEG. The ionic conductivity of the composite SPE films was investigated by electrochemical impedance spectroscopy. The highest ionic conductivity in this study of 2.57 × 10?5 S cm?1 was obtained with 25 phr POSS‐mPEG loading. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44460.  相似文献   

18.
Cellulose nanocrystals (CNCs) are ideal reinforcing agents for polymer nanocomposites because they are lightweight and nano‐sized with a large aspect ratio and high elastic modulus. To overcome the poor compatibility of hydrophilic CNCs in non‐polar composite matrices, we grafted poly(methyl methacrylate) (PMMA) from the surface of CNCs using an aqueous, one‐pot, free radical polymerization method with ceric ammonium nitrate as the initiator. The hybrid nanoparticles were characterized by CP/MAS NMR, X‐ray photoelectron spectroscopy, infrared spectroscopy, contact angle, thermogravimetric analysis, X‐ray diffraction, and atomic force microscopy. Spectroscopy demonstrates that 0.11 g/g (11 wt %) PMMA is grafted from the CNC surface, giving PMMA‐g‐CNCs, which are similar in size and crystallinity to unmodified CNCs but have an onset of thermal degradation 45 °C lower. Nanocomposites were prepared by compounding unmodified CNCs and PMMA‐g‐CNCs (0.0025–0.02 g/g (0.25–2 wt %) loading) with PMMA using melt mixing and wet ball milling. CNCs improved the performance of melt‐mixed nanocomposites at 0.02 g/g (2 wt %) loading compared to the PMMA control, while lower loadings of CNCs and all loadings of PMMA‐g‐CNCs did not. The difference in Young's modulus between unmodified CNC and polymer‐grafted CNC composites was generally insignificant. Overall, ball‐milled composites had inferior mechanical and rheological properties compared to melt‐mixed composites. Scanning electron microscopy showed aggregation in the samples with CNCs, but more pronounced aggregation with PMMA‐g‐CNCs. Despite improving interfacial compatibility between the nanoparticles and the matrix, the effect of PMMA‐g‐CNC aggregation and decreased thermal stability dominated the composite performance.  相似文献   

19.
Polymer and polymer–clay nanocomposite laminates were prepared as transparent thermal actuators with possible uses in automatic aeration and ventilation or as thermal switches. Low levels of smectite clay addition reduced the thermal expansion coefficient of poly(methyl methacrylate) (PMMA) but retained optical clarity and reduced water absorption. X‐ray diffraction and transmission electron microscopy were used to confirm the formation of PMMA–clay nanocomposites, and dynamic mechanical analysis was used to measure the coefficients of thermal expansion. The experimental values of the radius of curvature of the laminates from cantilever bending tests were in good agreement with the theoretical predictions for composite bars with only 4 wt % (nominally 1.3 vol %) mineral reinforcement. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Incorporation of crystalline barium titanate (BT) nanoparticles into poly(methyl methacrylate) (PMMA) was carried out to prepare highly refractive polymer nanocomposite films that have transparency and high permittivities. The BT nanoparticles were prepared by hydrolysis of a barium/titanium complex alkoxide in 2‐methoxyethanol, then surface‐modified with a silane coupling agent (3‐methacryloxypropyltrimethoxysilane) to improve their affinity for PMMA. The incorporation of the surface‐modified nanoparticles into PMMA was performed up to a nanoparticle content almost equivalent to particle close‐packing state. The refractive index of the composite films increased with nanoparticle incorporation, keeping the relative transmittance normalized with PMMA film above 90%. A high refractive index of 1.82 was reached at a nanoparticle content of 53 vol% with a dielectric constant as high as 36 and a dissipation factor as low as 0.05. The results demonstrate that the crystalline BT nanoparticles are useful fillers for effectively increasing both refractive index and dielectric constant of polymer nanocomposites. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号