首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用真空辅助RTM成型方法制备了0.5%碳纳米纤维(CNF)玻纤/环氧(GF/EP)复合材料,并对其一维饱和渗透率、不同温度下的力学性能、耐固体粒子冲蚀磨损性能进行了测试和研究分析。实验结果表明,加入0.5%CNF之后,平行于纤维方向的饱和渗透率降低了2~6倍,垂直于纤维方向的饱和渗透率降低了2~5倍;在孔隙率小于0.44时,两个方向的饱和渗透率差别不大,均接近于零;0.5%CNF的加入对纯EP及垂直于纤维方向复合材料的机械性能和耐固体粒子冲蚀磨损性能影响较小,在平行于纤维方向上复合材料的力学性能和耐固体粒子冲蚀磨损性能均有提高;在不同温度下,0.5%CNF的加入使垂直纤维方向上复合材料拉伸强度的稳定性得到提高。  相似文献   

2.
Investigation on dielectric properties and behavior of thermoset epoxy composite based on cellulosic fibers has been carried on. Dielectric spectra were measured in the frequency range 0.1 Hz–100 kHz and at temperature intervals from ambient to 200°C. For the composite, four relaxations processes were identified, namely the orientation polarization imputed to the presence of polar water molecules in Alfa fiber, the α mode relaxation associated with the glass transition of the epoxy resin matrix, the relaxation process associated with conductivity occurring as a result the carriers charges diffusion noted for high temperature above glass transition and low frequencies, and interfacial or Maxwell‐Wagner‐Sillars relaxation that is attributable to the accumulation of charges at the Alfa fibers/epoxy resin interfaces. Dielectric relaxation analysis revealed evolution in water relaxation and it is thus concluded that the chemical treatment of the fiber can strongly influence the dielectrical properties and interfacial polarization processes in composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
In this work, multiwalled carbon nanotubes (MWCNT), after previous oxidation, are functionalized with excess (3‐glycidyloxypropyl)trimethoxysilane (GLYMO) and used as reinforcement in epoxy matrix nanocomposites. Infrared, Raman, and energy‐dispersive X‐ray spectroscopies confirm the silanization of the MWCNT, while transmission electron microscopy images show that oxidized nanotubes presented less entanglement than pristine and silanized MWCNT. Thickening of the nanotubes is also observed after silanization, suggesting that the MWCNT are wrapped by siloxane chains. Field‐emission scanning electron microscopy reveals that oxidized nanotubes are better dispersed in the matrix, providing nanocomposites with better mechanical properties than those reinforced with pristine and silanized MWCNT. On the other hand, the glass transition temperature of the nanocomposite with 0.05 wt % MWCNT‐GLYMO increased by 14 °C compared to the neat epoxy resin, suggesting a strong matrix–nanotube adhesion. The functionalization of nanotubes using an excess amount of silane can thus favor the formation of an organosiloxane coating on the MWCNT, preventing its dispersion and contributing to poor mechanical properties of epoxy nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44245.  相似文献   

4.
It was proposed and subsequently established that wrapping of red oak wood crossties with epoxy impregnated glass fiber composites will impart longer service life and better stiffness and strength characteristics to these hybrid ties than conventional ones and will help them better withstand environmental extremes. The objective was to understand the degrading effects of aqueous (distilled water), saline (NaCl), acidic (HCl), and alkaline (NaOH) solutions, as well as accelerated aging and freeze/thaw cycling environments on the dynamic and static mechanical properties of these hybrid materials (i.e., wood, wrapped with fiber reinforced resin) and their components. Also micrographs of composite samples, obtained through scanning electron microscopy (SEM), were studied to determine the failure mechanism of composite specimens aged in different environments. Results showed that immersion in aging media lowered the glass transition temperature (Tg) and enhanced apparent phase separation in the samples because of polymer plasticization. In water immersion, the Tg and the stiffness increased with time owing to continued resin curing. At ambient temperature, sustained load had little effect on the mechanical behavior of the aged samples. The extent of degradation was the least for samples aged in salt solution. Soaking in room‐temperature acid solution was most damaging to pure red oak wood samples. Six‐cycle aging did not damage the neat resin or the hybrid samples, whereas it damaged pure wood specimens. Therefore, the composite wrapping around the wood core of the hybrid sample protected it sufficiently, thereby preventing damage to the hybrid specimen during the aging process. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

5.
《Polymer Composites》2017,38(7):1319-1326
The effects of epoxy‐functionalized glass fiber (GF) on the electrical conductivity, crystallization behavior, thermal stability, and dynamic mechanical properties of polyoxymethylene (POM)/thermoplastic polyurethane (TPU)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivities of POM/5%−20% TPU/1% MWCNT composites are significantly reduced by nine orders of magnitude after the addition of 20% GF because of the formation of TPU‐coated GF structure facilitating the construction of conductive networks. GF has no obvious influence on the crystallization temperature, melting temperature, and degree of crystallinity of POM in POM/TPU/MWCNT composites because of their relatively bigger size compared with POM chains and MWCNTs. The storage moduli of POM/TPU/MWCNT composites are improved by the addition of GF, indicating that POM/TPU/MWCNT/GF composites are promising materials with good electrical and mechanical properties. POLYM. COMPOS., 38:1319–1326, 2017. © 2015 Society of Plastics Engineers  相似文献   

6.
Carbon nanotubes (CNTs) have been emerged as a potential nanofiller to reinforce polymeric materials to improve their mechanical properties, like strength and modulus. However, time-dependent deformation of such materials under a constant load and elevated temperature is a matter of concern for long-term durability of these materials. The present article primarily demonstrates the effects of creep temperature and stress on the reinforcement efficiency of CNT in a glass fiber/epoxy (GE) composite. Two types of materials were investigated in this study—GE which was used as a control material, as well as CNT embedded GE composite. To elucidate the impact of CNT on the long-term durability of GE composite, creep tests have been performed at different temperatures (50, 80, and 110 °C) under bending loading. As applied stress has also significant contribution toward the elevated creep deformation of materials, creep tests have also been carried out under different stresses (5, 10, and 40 MPa). The strength of the CNT-GE composite exhibited 8.7 and 18.3% higher than that of control GE composite under tensile and bending load, respectively. Results suggest CNT reinforcement to be beneficial for low temperature applications, both in terms of creep strain and strain rate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47674.  相似文献   

7.
In this work, a high performance liquid crystalline epoxy composite was prepared and the effect of the alignment of LCE with long lateral substituent on the carbon fiber surface curing at low temperature on fracture toughness, dynamic mechanical, and thermal properties of liquid crystalline epoxy with lateral substituent (LCE6) was investigated by polarized optical microscopy (POM), wide angle X‐ray diffraction measurements (WAXS), dynamic mechanical analysis (DMA), thermogravimetric (TGA), and scanning electron microscopy (SEM). Curing degree of the composite was observed by FTIR. The experimental results indicate that the fracture toughness, glass transition temperature (Tg), thermal stability, degradation kinetics are associated with the alignment of LCE6 along long axis of carbon fiber. The alignment of LCE6 on carbon fiber surface can increase mesogen network density, which leads to higher fracture toughness, higher thermal stability, increase of the activation energies and higher Tg of the composite. The dynamic mechanical analysis shows that the compoaite possesses extremely higher dynamic storage moduli, which indicates that this LCE6/DDM/CF composite can be a high performance composite. Thus, the compoaite can be a potential candidate for advanced composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40363.  相似文献   

8.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

9.
In this study, the effects of multi‐walled carbon nanotubes (MWCNT), and its hybrids with iron oxide (Fe2O3) and copper oxide (CuO) nanoparticles on mechanical characteristics and thermal properties of epoxy binder was evaluated. Furthermore, simultaneous effects of using MWCNT with TiO2 as pigment and CaCO3 as filler for epoxy composites were determined. To investigate effects of nano‐ and micro‐particles on epoxy matrix, the samples were evaluated by TGA and DTA. It was found that the hybrid of MWCNT with nano metal oxides caused considerable increment in the tensile and flexural properties of epoxy samples in comparison to the single MWCNT containing samples at the same filler contents. Significant improvement in the thermal conductivity of epoxy samples was obtained by using TiO2 pigment along with MWCNT. The TiO2 pigment also caused considerable improvement in mechanical properties of the epoxy matrix and the MWCNT containing nanocomposite. The best mechanical and thermal properties of epoxy nanocomposites were obtained at 1.5 wt % of MWCNT and 7 wt % of TiO2 that it should be attributed to particle network forming of the particles which cause better nano/micro dispersion and properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43834.  相似文献   

10.
In this article, an easy, effective, and eco‐friendly method to improve the mechanical performance of glass fiber‐reinforced polymer composites is proposed, which involves the coating of unsized glass fiber fabric layers by simple immersion in an aqueous suspension containing sugarcane bagasse microfibrillated cellulose (MFC), followed by vacuum‐assisted liquid resin infusion as the processing method. From atomic force microscopy, a 250 nm MFC‐rich interphase was found, revealing its ability to build micro‐ and nanobridges acting as bulk epoxy matrix and GF linker. The interlaminar shear strength, quasi‐static tensile, and flexural tests, as well as the morphological and fractographic inspection of test coupons containing the secondary substructure, broadly supported the assumption of the efficient role on the interfacial level of this nano reinforcement by enhancing the load transference and distribution from the polymer matrix to the main reinforcing fiber system compared to baseline unsized fiber‐reinforced epoxy laminates. This finding permits this class of composite materials to be considered as having great potential to achieve products with excellent performance/cost ratios. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44183.  相似文献   

11.
In this work, we undertook a comparative study of the dynamic dielectric analysis of two unidirectional epoxy composites: flax‐fiber‐reinforced epoxy and flax/carbon‐fiber‐reinforced epoxy (FCFRE). In both composites, three relaxation processes were identified. The first one is the water dipoles polarization imputed to the presence of polar water molecules in flax fiber. The second relaxation process associated with conductivity occurs as a result of the carriers charges diffusion noted for high temperature above glass transition and low frequencies. As for the third dielectric relaxation associated with the interfacial polarization effect is attributable to the accumulation of charges at the fibers/matrix interface. The presence of two carbon plies in the reinforcement gives rise to two interfacial polarization effects in the FCFRE composite. The analysis of the Maxwell–Wagner–Sillars and the water dipoles polarizations using the Havriliak–Negami model revealed that the presence of two plies of carbon can locally decrease the adhesion of flax fibers in the matrix. This analysis was supported by the thermal properties using a differential scanning calorimety and the mechanical properties using a short beam shear test. POLYM. COMPOS., 241–253, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
Interest in polymers from renewable sources, as alternatives to petroleum‐based polymers, remains strong; however, their performance must be acceptable. To improve performance of epoxidized vegetable oils (EVO) in composite matrix applications, five amine curing agents were evaluated and compared with an anhydride agent used previously. Curing agents were tested in matrices for composites containing a petroleum‐based epoxy resin plus 0% or 30% epoxidized oil from canola (ECO) and soybean (ESO). The two amines with the highest glass transition temperature, determined by differential scanning calorimetry, were selected for characterization by dynamic mechanical analysis; bis (p‐aminocyclohexyl) methane (PACM) showed the highest performance. Amine: epoxy ratios 0.6 to 1.6 were then evaluated; ratios of 0.8 and 1.0 showed superior performance. E‐glass fiber reinforced composites with PACM/EVO showed thermal and mechanical performance slightly lower than the composites with 0% EVO and comparable with those of the anhydride curing agent. Therefore, ECO or ESO blended with petroleum‐based epoxy resins cured with PACM are recommended for its application in E‐glass reinforced composites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
Carbon fiber sheet molding compounds (C-SMCs) are discontinuous fiber reinforced composite materials. Among them, epoxy-based C-SMCs are becoming relevant materials due to their high thermomechanical performance and better formability than continuous fiber reinforced composites. The thermomechanical performance of epoxy resins and epoxy based continuous carbon fiber composites have shown to be influenced by hygrothermal aging. In this work, this influence is studied for an epoxy-based C-SMC. Epoxy-based C-SMC samples were hygrothermally aged by means of accelerated conditioning, exposing them to 65% relative humidity, and 80°C in a climatic chamber. The equilibrium moisture content, as well as the moisture diffusion coefficient has been determined. The thermomechanical properties of epoxy C-SMC have been analyzed by dynamic mechanical analysis, tensile, 3-point bending, and short beam tests in dry and aged samples. The results showed that epoxy C-SMC is affected by hygrothermal aging in the cases of moisture intake and its effects on Tg value, but interestingly, the hygrothermal aging did not generate any degradation effects in the mechanical response of epoxy C-SMC.  相似文献   

14.
Epoxidized soybean oil was incorporated as a co‐matrix into an epoxy resin, and the hybrid resin system was used for preparing glass fiber‐reinforced composites. Effect of addition of poly(vinyl chloride) plastisol and selected particulate fillers (fly ash and wood flour) to epoxy/epoxidized soybean oil matrix on mechanical and water uptake properties of glass fiber‐reinforced composites were studied. Fourier transform infrared spectroscopy was used to reveal the curing state of these composites. It was observed that tensile strengths and moduli decreased with the inclusion of all additives. However, addition of poly(vinyl chloride) plastisol, fly ash, and wood flour particulate fillers showed significant increase in impact strengths compared with neat epoxy composite in a synergistic manner. Water uptake results of the composites were found to be in good agreement with ? OH peak intensities obtained from Fourier transform infrared spectroscopy. Finally, acousto‐ultrasonic nondestructive technique was successfully used to assess damage states and to relate stress wave factors with tensile strength properties of modified epoxy‐based glass fiber composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40586.  相似文献   

15.
Multiwalled carbon nanotube (MWCNT)/epoxy composites are prepared, and the characteristics and morphological properties are studied. Scanning electron microscopy microphotographs show that MWCNTs are dispersed on the nanoscale in the epoxy resin. The glass‐transition temperature (Tg) of MWCNT/epoxy composites is dramatically increased with the addition of 0.5 wt % MWCNT. The Tg increases from 167°C for neat epoxy to 189°C for 0.5 wt % CNT/epoxy. The surface resistivity and bulk resistivity are decreased when MWCNT is added to the epoxy resins. The surface resistivity of CNT/epoxy composites decreases from 4.92 × 1012 Ω for neat epoxy to 3.03 × 109 Ω for 1 wt % MWCNT/epoxy. The bulk resistivity decreases from 8.21 × 1016 Ω cm for neat epoxy to 6.72 × 108 Ω cm for 1 wt % MWCNT/epoxy. The dielectric constant increases from 3.5 for neat epoxy to 5.5 for 1 wt % MWCNT/epoxy. However, the coefficient of thermal expansion is not affected when the MWCNT content is less than 0.5 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1272–1278, 2007  相似文献   

16.
The conductive polyamide 66 (PA66)/carbon nanotube (CNT) composites reinforced with glass fiber‐multiwall CNT (GF‐MWCNT) hybrids were prepared by melt mixing. Electrostactic adsorption was utilized for the deposition of MWCNTs on the surfaces of glass fibers (GFs) to construct hybrid reinforcement with high‐electrical conductivity. The fabricated PA66/CNT composites reinforced with GF‐MWCNT hybrids showed enhanced electrical conductivity and mechanical properties as compared to those of PA66/CNT or PA66/GF/CNT composites. A significant reduction in percolation threshold was found for PA66/GF‐MWCNT/CNT composite (only 0.70 vol%). The morphological investigation demonstrated that MWCNT coating on the surfaces of the GFs improved load transfer between the GFs and the matrix. The presence of MWCNTs in the matrix‐rich interfacial regions enhanced the tensile modulus of the composite by about 10% than that of PA66/GF/CNT composite at the same CNT loading, which shows a promising route to build up high‐performance conductive composites. POLYM. COMPOS. 34:1313–1320, 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
The water absorption characteristics of pineapple leaf fiber (PALF)/glass fiber (GF) hybrid polyester(PER) composites, and chemically modified PALF/polyester composites were evaluated by immersion in distilled water at 28, 60, and 90°C. The diffusion properties of the intimately mixed (IM) and the layered hybrid composite GPG (Glass skin and PALF core) of different PALF/GF ratio at the three temperatures were compared in order to identify the environmental ageing mechanism at different temperatures. The effect of temperature on the kinetics and thermodynamics of diffusion were also examined. The water uptake of both IM and GPG hybrid composites was decreased with increase in glass fiber content; the lowest water uptake was observed for 0.46 Vf GF hybrid composite. Among the chemically modified composites, vinyl tri 2‐methoxy ethoxy silane treated composites showed the lowest water uptake. Finally, parameters like diffusion, sorption, and permeability coefficients were determined. It was observed that equilibrium water uptake is dependent on the nature of the composite and temperature. Experimental results were also compared with theoretical predictions. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
The use of carbon fiber‐reinforced polymers (CFRPs) to reinforce old structures has become popular in recent years. In this study, the chemical structure of the epoxy resin used as the bonding agent in the CFRP strengthening system was modified by dispersing multi‐walled carbon nanotubes (MWCNTs) in order to improve the performance of the strengthening system. Composites were fabricated with different mixing orders employing the solvent‐assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis, dynamic mechanical analysis, and tensile tests were conducted to investigate the effect of CNT dispersion and fabrication method on the thermal and mechanical properties of epoxy composite. In addition, the temperature‐dependent tensile behavior of fabricated composites was studied by performing tensile tests at elevated temperatures. The morphology of CNT/epoxy composites was characterized using scanning electron microscopy (SEM). Fourier transform infrared (FTIR) was also used to show the influence of solvent on the molecular structure of composites. Based on the experimental results, the decomposition temperature of the epoxy resin was heightened by 15°C as a result of solvent‐assisted dispersion of nanotubes. However, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. FTIR analysis revealed that the solvent negatively affects the curing process of epoxy composite. A considerable enhancement was recorded in the tensile properties as a result of CNT infusion. This was attributed to the homogeneous dispersion of nanotubes which was shown by SEM images. Using solvent to disperse nanotubes led to the reduction of tensile strength of the epoxy composite at elevated temperature due to the lower Tg. POLYM. COMPOS. 37:1021–1033, 2016. © 2014 Society of Plastics Engineers  相似文献   

19.
The cure kinetics and glass transition development of a commercially available epoxy/carbon fiber prepreg system, DMS 2224 (Hexel F584), was investigated by isothermal and dynamic‐heating experiments. The curing kinetics of the model prepreg system exhibited a limited degree of cure as a function of isothermal curing temperatures seemingly due to the rate‐determining diffusion of growing polymer chains. Incorporating the obtained maximum degree of cure to the kinetic model development, the developed kinetic equation accurately described both isothermal and dynamic‐heating behavior of the model prepreg system. The glass transition temperature was also described by a modified DiBeneditto equation as a function of degree of cure. Finally, the equivalent processing time (EPT) was used to investigate the development of glass transition temperature for various curing conditions envisioning the internal stress buildup during curing and cooling stages of epoxy‐based composite processing. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 144–154, 2002; DOI 10.1002/app.10282  相似文献   

20.
Poly(L‐lactic acid) (PLLA)‐aligned fibers with diameters in the nano‐ to micrometer size scale are successfully prepared using the electrospinning technique from two types of solutions, different material parameters and working conditions. The fiber quality is evaluated using scanning electron microscopy (SEM) to judge fiber diameter, diameter uniformity, orientation, and appearance of defects or beads. The smoothest fibers, most uniform in diameter and defect free, were found to be produced from 10% w/v chloroform/dimethylformamide solution using an accelerating voltage from 10–20 kV. Addition of 1.0% multiwalled carbon nanotubes (MWCNT) into the electrospinning solution decreases fiber diameter, improves diameter uniformity, and slightly increases molecular chain alignment. The fibers were cold crystallized at 120°C and compared with their as‐spun counterparts. The influences of the crystalline phase and/or MWCNT addition were examined using fiber shrinkage, temperature‐modulated calorimetry, X‐ray diffraction, and dynamic mechanical analysis. Crystallization increases the glass transition temperature, Tg, slightly, but decreases the overall fiber alignment through shrinkage‐induced buckling of the fibers when heated above Tg. MWCNT addition has little impact on Tg, but significantly increases the orientation of crystallites. MWCNT addition slightly reduces the dynamic modulus, whereas crystallization increases the modulus in both neat‐ and MWCNT‐containing fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41779.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号