共查询到20条相似文献,搜索用时 0 毫秒
1.
To explore a potential method for improving the toughness of a polylactide (PLA), we used a thermoplastic polyurethane (TPU) elastomer with a high strength and toughness and biocompatibility to prepare PLA/TPU blends suitable for a wide range of applications of PLA as general‐purpose plastics. The structure and properties of the PLA/TPU blends were studied in terms of the mechanical and morphological properties. The results indicate that an obvious yield and neck formation was observed for the PLA/TPU blends; this indicated the transition of PLA from brittle fracture to ductile fracture. The elongation at break and notched impact strength for the PLA/20 wt %TPU blend reached 350% and 25 KJ/m2, respectively, without an obvious drop in the tensile strength. The blends were partially miscible systems because of the hydrogen bonding between the molecules of PLA and TPU. Spherical particles of TPU dispersed homogeneously in the PLA matrix, and the fracture surface presented much roughness. With increasing TPU content, the blends exhibited increasing tough failure. The J‐integral value of the PLA/TPU blend was much higher than that of the neat PLA; this indicated that the toughened blends had increasing crack initiation resistance and crack propagation resistance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
2.
In this work, we investigated the microphase separation, mechanical, and dynamic mechanical properties of thermoplastic polyurethane elastomers (TPUs) with one-soft segment (polypropylene glycol, PPG, or hydroxyl-terminated polybutadiene, HTPB) or bi-soft segment (PPG and HTPB) using FTIR, XRD, SAXS and amplitude modulated-frequency modulated viscoelastic mode of AFM (AM-FM mode AFM) methods. The results showed that the microphase separation process of hard and soft segments (HS and SS) in TPU containing PPG and HTPB soft segments (PPG-HTPB-PU) was restricted by randomly alternated bi-soft segments, which results in formation of a low content of irregular-shaped hard domain (HD). In addition, the microphase separation of PPG-HTPB-PU induced a triple-phased structure of HD, HTPB rich phase and mesophase. The mesophase of PPG-HTPB-PU was formed of HS, PPG and HTPB segments which were excluded out of HD and HPTB rich domains during microphase separation process. The damping temperature range (at tan δ greater than 0.3) of PPG-HTPB-PU was from −14.6 to 32.1°C (46.5°C) which was more broad than that of TPU containing HTPB soft segment (HTPB-PU). The broad damping temperature range of PPG-HTPB-PU is mainly attributed to the enhanced energy consumption caused by the frictional motions of mixed segments of mesophase. 相似文献
3.
Jitang Fan 《应用聚合物科学杂志》2018,135(17)
Strain rate dependency is an important issue for the mechanical response of materials in impact events. Dynamic mechanical properties of a high‐strength poly(methyl methacrylate) (PMMA) were studied by using split Hopkinson pressure bar technology. The maximum stress is enhanced with the increase of strain rate, and then keeps a constant with the further increase of strain rate, which is accompanied with a linear increase of fracture energy density. The critical data of strain rate and maximum stress were determined. Eyring's equation was applied for analyzing the influence factors, which relate to the hardening induced by strain rate and softening caused by adiabatic temperature rise. Inherent physical mechanisms were clarified and the strategies for designing advanced impact‐resistant polymers were proposed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46189. 相似文献
4.
To overcome serious rigidity depression of rubber‐toughened plastics and fabricate a rigidity‐toughness balanced thermoplastic, a combination of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) and ethylene‐propylene rubber (EPR) was used to toughen polypropylene. The dynamic mechanical properties, crystallization and melting behavior, and mechanical properties of polypropylene (PP)/EPR/SEEPS blends were studied in detail. The results show that the combination of SEEPS and EPR can achieve the tremendous improvement of low‐temperature toughness without significant strength and rigidity loss. Dynamic mechanical properties and phase morphology results demonstrate that there is a good interfacial strength and increased loss of compound rubber phase comprised of EPR component and EP domain of SEEPS. Compared with PP/EPR binary blends, although neither glass transition temperature (Tg) of the rubber phase nor Tg of PP matrix in PP/EPR/SEEPS blends decreases, the brittle‐tough transition temperature (Tbd) of PP/EPR/SEEPS blends decreases, indicating that the increased interfacial interaction between PP matrix and compound rubber phase is also an effective approach to decrease Tbd of the blends so as to improve low‐temperature toughness. The balance between rigidity and toughness of PP/EPR/SEEPS blends is ascribed to the synergistic effect of EPR and SEEPS on toughening PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45714. 相似文献
5.
Preparation and characterizations of RTV epoxy blends using amide maleic anhydride‐g‐liquid polybutadience as both reactive toughening and curing components 下载免费PDF全文
Amide maleic anhydride‐g‐liquid polybutadience (AMALPB) was synthesized using maleic anhydride‐g‐liquid polybutadience (MALPB) with ethylenediamine (EDA), and its structure was confirmed by FTIR and 1H‐nuclear magnetic resonance spectra, respectively. It was then used as a reactive toughening agent to make blends with diglycidyl end‐capped poly(bisphenol‐A‐co‐epichlorohydrin epoxy cured at room temperature. Their thermal decomposing behaviors did not show much difference because both EDA and AMALPB possessed similar aliphatic groups. All their glass transition temperatures (Tg) increased more than 10 °C than that of the neat epoxy, and with the addition of AMALPB, the blends were greatly strengthened upon heating as show from their storage moduli. When AMALPB was added at 10 wt %, its elongation at break increases to a maximum of 8.8% which was about two times higher than that of the neat epoxy, and its tensile strength also increased. However, the excessive addition of AMALPB resulted in an apparent decline in their tensile strength at content above 20%. The simultaneous improvements in both tensile strength and strain were attributed to the existence of well‐dispersed rubber particles in the continuous matrices performing plastic deformation that resulted from the chemical bonds of interfaces among the rubber particles and matrix, and meanwhile, inducing the deflection of the cracks. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45985. 相似文献
6.
Effect of rubber interparticle distance distribution on toughening behavior of thermoplastic polyolefin elastomer toughened polypropylene 下载免费PDF全文
In this study, a blend of polypropylene (PP) and two types of thermoplastic polyolefin elastomers (TPO) were prepared by melt mixing. The TPOs were either ethylene‐ or propylene‐based copolymer. The mechanical response and morphology of the blends were investigated using tensile and impact tests and scanning electron microscopy technique. There was significant increase in the impact strength of the TPO‐modified PP, which was an outcome of fine dispersion of TPO inclusions. In particular, the blends containing PP‐based TPO exhibited dramatic enhancement in toughness energy as featured by a plastic deformation in tensile test. The brittle‐tough transition had several deviations from theoretical models, in which generally the interparticle distance criterion was realized as a single parameter, only controlled the transition of brittle to tough behavior. Moreover, the brittle‐tough transition in tensile and impact mode tests was not coincident in the blend with a broad distribution of interparticle distance. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44068. 相似文献
7.
Understanding the foamability and mechanical properties of foamed polypropylene blends by using extensional rheology 下载免费PDF全文
Ester Laguna‐Gutierrez Rob Van Hooghten Paula Moldenaers Miguel Angel Rodriguez‐Perez 《应用聚合物科学杂志》2015,132(33)
In this article, the influence of the rheological behavior of miscible blends of a linear and a high melt strength, branched, polypropylene (HMS PP), on the cellular structure and mechanical properties of cellular materials, with a fixed relative density, has been investigated. The rheological properties of the PP melts were investigated in steady and oscillatory shear flow and in uniaxial elongation in order to calculate the strain hardening coefficient. While the linear PP does not exhibit strain hardening, the blends of the linear and the HMS PP show pronounced strain hardening, increasing with the concentration of HMS PP. Related to the cellular structure, in general, the amount of open cells, the cell size, and the width of the cell size distribution increase with the amount of linear PP in the blends. Also mechanical properties are conditioned by the extensional rheological behavior of PP blends. Cellular materials with the best mechanical properties are those that have been fabricated using large amounts of HMS PP. The results demonstrate the importance of the extensional rheological behavior of the base polymers for a better understanding and steering of the cellular structure and properties of the cellular materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42430. 相似文献
8.
Chengcheng Gao Xianyang Bao Long Yu Hongsheng Liu George P. Simon Ling Chen Xingxun Liu 《应用聚合物科学杂志》2014,131(23)
The focus of this research is the study of the microstructures and miscibility at the interface between semi‐crystalline and amorphous PLAs [poly (l ‐lactic acid)(PLLA) with poly (l ,d ‐lactic acid)(PDLLA), respectively]. The blends are prepared through thermal processing (extrusion and hot‐pressing). To increase the area of interface between PDLLA and PLLA, the fibers from PLLA and PDLLA are used. Thermal and microstructures of the blends were studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), dynamic thermogravimetric analysis(DMA), small‐angle X‐ray diffraction(SAXS) and wide‐angle X‐ray diffraction (WAXD). The two PLAs are miscible in molten state. However, phase separation is detected after various thermal treatments, with PDLLA being excluded from the regions of interlamellar PLLA regions when PDLLA content is low, as determined from X‐ray diffraction studies. The compatibility between the two PLAs is not perfect in the molten state, since enthalpies of the various blends at Tg are lower than any pure PLA material. The semi‐crystalline PLLA fiber can recrystallize alone in the molten amorphous PDLLA, and a higher nuclei density is observed at the interface. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41205. 相似文献
9.
Experimental and MD simulation study on the physical and mechanical properties of organically modified montmorillonite clay and compatibilized linear low density polyethylene nanocomposites 下载免费PDF全文
Understanding the interfacial interactions plays a key role in controlling mechanical and physical properties of polymer/clay nanocomposites (PCNs). In this work, the surface interactions between constituents of experimentally prepared PCNs which are the pristine linear low density polyethylene (PE) chains, PE compatibilizers, montmorillonite clay surface layer, and surfactants were studied quantitatively by employing molecular dynamics simulation technique. The interaction energy between the polymer and the clay was found to be inversely proportional with the volume of the surfactant which decreases the electrostatic interactions between the compatibilizer and the hydrophilic clay surface. However, the van der Waals (vdW) interactions between alkyl tails of surfactants and the PE chains increase with the tail length of the surfactants. The most attractive interaction was between the surfactant's head group and the clay surface. We showed that there existed fine balance between the electrostatic and vdW type forces on the stability and the enhanced properties of the PE–organoclay nanocomposites. Calculated interaction energies were then correlated to the experimentally measured mechanical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45817. 相似文献
10.
Dynamic vulcanization was used to prepare thermoplastic elastomer blends of nylon (polyamide), polypropylene (PP) and polybutylene terephthalate thermoplastics with chlorobutyl (CIIR) and nitrile (NBR) rubbers. Mechanical properties of the blends were correlated against composition. Although hardness and tensile strength increase with increasing thermoplastic content for all blends, elongation at break values initially decrease and then increase in the range of 20–40% thermoplastic. For various blend compositions, the swelling behavior was evaluated with solvents that are able to dissolve the uncured rubber portion but not the thermoplastic component of the mixtures. All five systems showed swelling index values that were substantially less than the calculated “theoretical” values of swelling index. This was attributed to a caging effect of the thermoplastic component on the rubber phase, which restricts access of solvent and swelling of the rubber phase. In turn, this affects the solvent resistance of the blend. Some of the blends were evaluated by differential scanning calorimetry to assess the compatibility of the components in the blend. scanning electron microscopy was also used to determine the degree of compatibility of the two phases generated in the mixing process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
11.
Effect of vinyl and phenyl group content on the physical and dynamic mechanical properties of HVBR and SSBR 下载免费PDF全文
High‐vinyl polybutadiene rubber (HVBR) and solution‐polymerized styrene–butadiene rubber (SSBR) can meet the requirements of high‐performance tires due to their excellent wet skid resistance and lower rolling resistance. In this paper, the effects of the vinyl and phenyl groups and their contents on the vulcanization behavior, mechanical strength, fatigue resistance, heat resistance, and wear resistance of HVBR and SSBR were investigated, and the dynamic viscoelasticities of HVBR and SSBR vulcanizates with or without carbon black were explored by dynamic mechanical analysis (DMA). The experimental results showed that the vinyl groups contributed more to the wear resistance and fatigue resistance of vulcanizates than the phenyl groups, but the phenyl groups contributed more to the mechanical strength of the vulcanizates than the vinyl groups. The DMA results showed that the vinyl and phenyl groups could significantly improve the road‐gripping capability and wet skid resistance of HVBR and SSBR vulcanizates, but carbon black could slightly weaken the effect of vinyl and phenyl groups on the wet skid resistance of vulcanizates, and the effect of carbon black on vinyl groups was more significant. Despite the presence of carbon black, the phenyl groups contributed more heat buildup to the vulcanizates than the vinyl groups. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45975. 相似文献
12.
Morphology,drug release behavior,thermal, and mechanical properties of poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blends 下载免费PDF全文
Negar Naghdi Sedeh Mehdi Entezam Seyed Hassan Jafari Hossein‐Ali Khonakdar Majid Abdouss 《应用聚合物科学杂志》2018,135(26)
Poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blends containing different amounts of PVP (0, 10, 25, 50, and 100 wt %) prepared by a solution casting method were characterized in terms of microstructure, thermal, and mechanical properties along with their drug release behavior. Fourier‐transform infrared spectroscopy results confirmed formation of hydrogen bonds between PEO and PVP. Although scanning electron microscopy micrographs showed no phase separation in the blends, the elemental analysis data obtained by energy dispersive X‐ray technique revealed partial miscibility between the blend components. The miscibility of the blend and degree of crystallinity of PEO component of the blend were decreased with increasing PVP content of the blend. The nucleating role of PVP in crystallization of PEO was confirmed by differential scanning calorimetry analysis. A synergistic effect on mechanical properties was obtained as a result of blending PVP with PEO. The results of curcumin release studies from the films indicated that, the blends have lower diffusion coefficients and slower drug release rate as compared to the neat PEO. Theoretical analysis of the drug release data using Peppas's model revealed that the kinetic of drug release from all the films is governed by a non‐Fickian diffusion mechanism. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46403. 相似文献
13.
Enhancing the mechanical and thermal properties of polyacrylonitrile through blending with tea polyphenol 下载免费PDF全文
Several polyacrylonitrile (PAN)/tea polyphenol (TP) blends were prepared with various mixing weight ratios (percentage). With a commercial acrylonitrile–butadiene–styrene (ABS) as reference, the results show that the PAN/TP blends with 12.5 wt % TP had a better antiwear ability and similar hardness to those of ABS. All of the prepared PAN/TP blends showed a lower impact strength than the referenced ABS. However, some values were indeed higher than those reported for engineering materials in the literature, for example, polystyrenes and some ABS blends. Differential scanning calorimetry, differential thermogravimetry, and dynamic mechanical analysis indicated that the PAN/TP blends had enhanced the thermal stability compared to the pure PAN. Fourier transform infrared spectral analysis suggested that the H bonds increased in the PAN/TP blends. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40411. 相似文献
14.
Daniel E. Ramírez‐Arreola Jorge R. Robledo‐Ortiz Francisco Moscoso Martín Arellano Denis Rodrigue Rubén González‐Núñez 《应用聚合物科学杂志》2012,123(1):179-190
In this work, the processing and properties of blown films prepared from thermoplastic corn starch (TPS) and polycaprolactone (PCL) were studied, in particular at high TPS content. The influence of processing parameters and material moisture content on the tensile properties was also studied. The results show that final film properties are mainly controlled by the draw ratio, blow‐up ratio and PCL concentration in the blends. The results also show that PCL/TPS films are less hydrophilic as PCL content increases. Finally, it was found that a very narrow processing window exists for this blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011. 相似文献
15.
Pascal Yves Vuillaume Andro Vachon William Grey Keven Pépin Chan Juan Zhang 《塑料、橡胶和复合材料》2018,47(3):95-105
Poly(lactic acid) (PLA) is characterised by its inherent brittleness, a detrimental feature for the production of durable bioplastics. PLA has been toughened by a low amount (12?wt-%) of various thermoplastic elastomers (TPE) including poly(ether-b-ester) (PEEs), poly(ether-b-amide) (PEBA) and poly(ether-b-urethane) (PEU). PLA–TPE blends were prepared by using a twin screw extruder. Ductility and impact resistance can be slightly improved with the incorporation of TPEs but but PEBA appears the most efficient. Reactive compatibilisation has been performed with the addition in the melt of a low amount (2?wt-%) of 4,4-methylene diphenyl diisocyanate. All compatibilised blends exhibit high toughness with similar ductility. These blends preserve good stiffness and high tensile strength. Compatibilised PEBA blends can be considered as super tough poly(lactic acid) materials. This work confirms that the flexibility of the elastomer together with the quality of the interfacial adhesion between the rigid (PLA) and the soft (TPE) phases are the primary factors influencing the toughness. 相似文献
16.
Viscosity measurements were carried out on corn starch (CS) and CS–sodium alginate (SA) suspensions at low levels of SA [1 to 10% (w/w)], as a function of temperature. The addition of SA caused the granular CS gelatinization process to occur at a lower onset temperature. CS and CS–SA mixtures were extruded in single‐ and twin‐screw extruders, with 15% glycerol and different water contents. Processing of plasticized CS–SA mixtures required lower temperatures, which is consistent with the viscosity results. Homogeneous and flexible extrudates were obtained by processing in a twin‐screw extruder. Samples in the composition range between 0 and 10% (w/w) SA were examined using tensile tests as a function of water content. Mechanical properties were dependent on the water content and on the SA composition. A significant increase in the Young's modulus value was observed for the blend containing 1% SA. Dynamic mechanical analysis was carried out for CS and CS–SA blends. Two transitions were detected in the temperature range –80 to 150°C. Scanning electron microscopy was used to examine the morphology of the extruded samples. The surfaces of the films were homogeneous, which demonstrated that the CS granules in all samples were characteristically destructured under the conditions used in processing. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 412–420, 2001 相似文献
17.
Influence of temperature on the microstructure and mechanical properties of stretched polypropylene 下载免费PDF全文
Microstructure and mechanical properties of isotactic polypropylene (iPP) stretched at different temperatures were studied. Strain‐induced fibrils were observed after stretching. Crystallinity (Xc), crystallite thickness (Lc), long period (Lpf), and diameter (Df) of fibrils were characterized by Differential Scanning Calorimetry and Small angle X‐ray scattering. Lpf of stretched iPP below 60°C was found to be lower than undrawn iPP. Xc, Lc, and Df increased with increasing draw temperature. Tensile test showed that Young's moduli of stretched iPPs were negatively dependent on Xc and Lc. The fraction of taut tie molecules was estimated from the mechanical model. Results showed that more tie molecules were formed in the samples stretched at lower temperatures. Dynamical mechanical analysis showed that glass transition temperature was strongly dependent on the draw temperature. The glass transition peak disappeared in stretched iPPs obtained below 80°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42622. 相似文献
18.
In this study, poly (lactic acid) (PLA) blended with various rubber components, i.e., poly (ethylene‐glycidyl methacrylate) (EGMA), maleic anhydride grafted poly(styrene‐ethylene/butylene‐styrene) triblock elastomer (m‐SEBS), and poly(ethylene‐co‐octene) (EOR), was investigated. It was observed that EGMA is highly compatible due to its reaction with PLA. m‐SEBS is less compatible with PLA and EOR is incompatible with PLA. Electron microscopy (SEM and TEM) revealed that a fine co‐continuous microlayer structure is formed in the injection‐molded PLA/EGMA blends. This leads to polymer blends with high toughness and very low linear thermal expansion both in the flow direction and in the transverse direction. The microlayer thickness of rubber in PLA blends was found to play key roles in reducing the linear thermal expansion and achieving high toughness of the blends. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
19.
Use of short isobornyl methacrylate building blocks to improve the heat and oil resistance of thermoplastic elastomers via RAFT emulsion polymerization 下载免费PDF全文
Xiaowei Fu Ye Yuan Xiaofeng Chen Yao Xiao Jiliang Wang Changlin Zhou Jingxin Lei 《应用聚合物科学杂志》2017,134(40)
Triblock copolymer (TCP)‐based thermoplastic elastomers (TPEs) were designed via reversible addition–fragmentation chain‐transfer emulsion polymerization. Short isobornyl methacrylate (IM) building blocks in the two ends of molecular chain were incorporated to guarantee the mechanical properties of the TPEs at high temperature (i.e., heat resistance) because of the high glass‐transition temperature (Tg) of poly(isobornyl methacrylate) (PIM; ~180 °C). The microphase separation, tensile properties at different temperatures, dynamic mechanical properties, oil resistance, and thermal stability of the TPEs were extensively characterized. The TPEs had distinct microphase separation with a wide inter‐Tg interval (150–185 °C). The tensile strength and elongation at break of the TPEs decreased with increasing temperature from 25 to 100 °C because of the reduced interactions in the phase domain. Even so, the TPEs had a high elongation at break beyond 200% and little change in the tensile strength even at 100 °C together with a wide quasi‐platform stage between the Tg values in dynamic mechanical analysis; this indicated good heat resistance. Meanwhile, the TPEs had an enhanced oil resistance and a thermal stability higher than 300 °C. These TCP‐based TPEs with heat and oil resistance broaden the application potential in practical fields. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45379. 相似文献
20.
Effect of interface on the mechanical behavior of polybutadiene–silica composites: An experimental and simulation study 下载免费PDF全文
The effect of interface property on the mechanical behavior of silica–polybutadiene composites is systematically investigated via combined experimental and dynamics simulation. In experiment, the interface property is controlled by SiO2 particle size, silane coupling agents, and silane grafting density. The effects of these control parameters on the vulcanization kinetics, tensile strength, and dynamic mechanic properties are investigated and discussed. Both the experimental and simulation studies reveal the pivot role of filler–polymer interface on the mechanical reinforcement. Simulation study reveals that the constrained polymer layer (~12 nm) surrounding the silica particles shows increased stress from 30 to 230 MPa, which is identified as the major reason for the overall enhancement of 100% modulus from 0.8 to 1.6 MPa. The molecular mechanics of interface from simulation is well correlated to the experimental results in this study, which provides a molecular level understanding of the relationship between interfacial interaction and mechanical reinforcement. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46089. 相似文献