首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The processing parameters for hot working of Fe–15Cr–2.2Mo–15Ni–0.3Ti austenitic stainless steel (alloy D9) are identified using processing maps developed on the basis of the dynamic materials model and hot compression data in the temperature range 850–1250°C and strain rate range 0.001–100 s-1. The efficiency of power dissipation increased with increase in temperature and decrease in strain rate. Dynamically recrystallised microstructures resulted when the efficiency of power dissipation was in the range 27–37%, i.e. in the temperature range 1050–1250°C and strain rate range 0.001–0.5 s-1. Flow localisation occurred in the regions of instability at temperatures lower than 1000°C and at higher strain rates. The dynamic recrystallisation regime observed in this alloy is compared with other austenitic stainless steels, namely, AISI type 304L and 316L.  相似文献   

2.
Microstructure and mechanical properties of the Fe–25Cr–20Ni austenitic stainless steel after cryorolling with different reductions were investigated by means of optical, scanning and transmission electron microscopy, X-ray diffraction and mini-tensile testing. High density tangled dislocations and a small amount of deformation twins formed after 30% deformation. After 50% strain, a large amount of deformation twins was generated. Meanwhile, interactions between the twins and dislocations started to happen. As the strain increased to 70%, many deformation twins were produced and the interactions between the twins and dislocations were significantly enhanced. When the cryorolling was 90%, the grain size was refined to the nanometer scale. XRD analysis indicated that the diffraction peaks of the samples became broader with the strain increase. The yield strength and the ultimate strength increased from 305 MPa and 645 MPa (before deformation) to 1502 MPa and 1560 MPa (after 90% deformation), respectively. However, the corresponding elongation decreased from 40.8% to 6.4%. The tensile fracture morphology changed from typical dimple rupture to a mixture of quasi-cleavage and ductile fracture. After 90% deformation, the microhardness was 520 HV, which increased by 100% compared with the original un-deformed sample.  相似文献   

3.
Abstract

In this study, the Ti–6Al–4V alloy was diffusion bonded to austenitic stainless steel at temperatures of 820, 885, 930 and 980°C, under a pressure of 5 MPa for 30 min. The effect of temperature on interface formations and microstructure was investigated using a scanning electron microscope (SEM), energy dispersive spectrograph (EDS) microanalyses, X-ray diffraction and shear strength of bonded specimens. The results showed that intermetallic phases and σ-phase formed in the interface region.  相似文献   

4.
The austenite to martensite transformation in a semi-austenitic stainless steel containing 17 wt-%Cr, 7 wt-%Ni and 1 wt-%Al was investigated with vibrating sample magnetometry and electron backscatter diffraction. Magnetometry demonstrated that, within experimental accuracy, martensite formation can be suppressed on fast cooling to 77 K as well as on subsequent fast heating to 373 K. Surprisingly, martensite formation was observed during moderate heating from 77 K, instead. Electron backscatter diffraction demonstrated that the morphology of martensite is lath type. The kinetics of the transformation is interpreted in terms of athermal nucleation of lath martensite followed by thermally activated growth. It is anticipated that substantial autocatalytic martensite formation occurs during thermally activated growth. The observation of a retardation of the transformation followed by a new acceleration during slow isochronal (i.e. at constant rate) cooling is interpreted in terms of the combined effect of the strain energy introduced in the system during martensite formation, which thermodynamically and/or mechanically stabilises austenite, and autocatalytic nucleation of martensite.  相似文献   

5.
Abstract

20Cr–25Ni–Nb stabilised stainless steel is used to contain the fuel in the advanced gas cooled reactor. During operation, this steel must withstand temperatures from 600 to 1073 K in CO2 gas at 40 atm pressure. It is important that the oxide which forms on this steel is thoroughly characterised and the adherence of the oxide to the metal is understood. A technique of sputter ion plating has been used to remove the oxide from the metal without destroying either metal or oxide. This involves plating the oxide with nickel or molybdenum at a temperature of 600 K, while sputtering the surface with argon ions. On cooling, stresses set up between the oxide and the metal cause the oxide plus sputtered layer to peel off allowing both the metal and oxide sides of the interface to be examined. Results are presented from studies of the metal/oxide interface using scanning Auger microscopy. Analysis of grain centres and grain boundaries indicates that silicon and chromium play an important role in oxide/metal adhesion and, together with conventional analysis of the bulk oxide, assist in determining the oxidation mechanism.

MST/862  相似文献   

6.
In this paper, an adaptive fuzzy-neural network model has been established to model the constitutive relationship of Ti–25V–15Cr–0.2Si alloy during high temperature deformation. The network integrates the fuzzy inference system with a back-propagation learning algorithm of neural network. The experimental results were obtained at deformation temperatures of 900–1100 °C, strain rates of 0.01–10 s−1, and height reduction of 50%. After the training process, the fuzzy membership functions and the weight coefficient of the network can be optimized. It has shown that the predicted values are in satisfactory agreement with the experimental results and the maximum relative error is less than 10%. It proved that the fuzzy-neural network was an easy and practical method to optimize deformation process parameters.  相似文献   

7.
In the present study, vacuum brazing was applied to join Ti–6Al–4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness showed that shear strength decreased with increasing the brazing temperature and time. The results showed that the wettability of the filler alloy was increased by enhancing the wetting test temperature. It was shown that by increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe–Cu–Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for the different brazing temperatures.  相似文献   

8.
Abstract

The deformation behaviour of a 20Cr–25Ni superaustenitic stainless steel (SASS) with initial microstructure of columnar dendrites was investigated using the hot compression method at temperatures of 1000–1200°C and strain rates of 0·01–10 s?1. It was found that the flow stress was strongly dependent on the applied temperature and strain rate. The constitutive equation relating to the flow stress, temperature and stain rate was proposed for hot deformation of this material, and the apparent activation energy of deformation was calculated to be 516·7 kJ mol?1. Based on the dynamic materials model and the Murty’s instability criterion, the variations of dissipation efficiency and instability factor with processing parameters were studied. The processing map, combined with the instability map and the dissipation map, was constructed to demonstrate the relationship between hot workability and microstructural evolution. The stability region for hot processing was inferred accurately from the map. The optimum hot working domains were identified in the respective ranges of the temperature and the strain rate of 1025–1120°C and 0·01–0·03 s?1 or 1140–1200°C and 0·08–1 s?1, where the material produced many more equiaxed recrystallised grains. Moreover, instability regimes that should be avoided in the actual working were also identified by the processing map. The corresponding instability was associated with localised flow, adiabatic shear band, microcracking and free surface cracks.  相似文献   

9.
The work-hardening effect and strain-rate sensitivity behavior during hot deformation have been quantitatively investigated in this present paper. Isothermal compression experiment of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy has been conducted for verification. Linear relationship between work-hardening rate and true strain/stress has been derived from Kocks–Mecking dislocation relation. The work-hardening effect shows two obvious stages with strain: steady fluctuations and linear decreasing. Obvious work-hardening effect could be demonstrated under lower temperatures and higher strain rates. The work-hardening decrease at linear-decreasing regime becomes more stronger with temperature elevated and rate lowered, reverse-proportional to Zener–Hollomon parameters. Strain-rate sensitivity coefficient for hot deformation was decomposed into three parts from JMAK recrystallization kinetics. The influence of strain rate on DRX evolution has been termed as the major factor determining strain-rate sensitivity. Strain-rate sensitivity coefficients for steady-state deformation (ɛ = 0.7) of Ti–5Al–5Mo–5V–1Cr–1Fe alloy have been characterized as a function of deformation parameters and strain-rate sensitivity has been identified more obvious with temperature elevated and rate lowered.  相似文献   

10.
Guo  Yue  Zhang  Jianhai  Zhao  Hongwei 《Journal of Materials Science》2021,56(24):13429-13478

Al–Zn–Mg–Cu alloys can be fabricated by a series of thermo-mechanical processing methods (e.g., hot rolling, forging and extrusion), which is able to serve in aeronautic, automobile, and marine industries because of its excellent physical properties. However, reaching the balance between high strength and favorable ductility to present its high performance is still in progress, during which temperature and strain rate are two very important external variables. More importantly, the core lies in sophisticated microstructure evolution paths involved in hot deformation, which consists of different microstructure mechanisms and behaviors and can be expressed as various mechanical responses. Therefore, a fundamental review of microstructure mechanisms and behaviors, microstructure evolution and relevant mechanical responses of Al–Zn–Mg–Cu alloys during high-temperature deformation is of great significance. In present paper, first, various experimental methods have been introduced. Second, general trends of mechanical properties changing with temperature and strain rate have been summarized. Third, major microstructure mechanisms and behaviors have been discussed. Then, a schematic illustration originating from dislocations’ movement has been depicted, which succeeding microstructure evolution and mechanical responses (including superplasticity) have been reviewed accordingly. Finally, further suggestions of hot deformation of Al–Zn–Mg–Cu alloys have been given.

  相似文献   

11.
An in situ magnetic device was employed to quantify the deformation induced martensite in a Fe–19Cr–3Mn–4Ni–0.15C–0.15N (wt-%) steel during tensile testing in the temperature range of ?40 to 22°C. The new device consists of an electromagnetic field which serves to magnetise the martensite phase as it forms during tensile loading and a second coil to detect the effective electrical potential difference induced by the magnetisation of tensile specimens. To implement the in situ measurement system, a correlation was necessary between the induced electrical potential difference and the deformation induced martensite fractions during uniaxial static tensile tests. The correlation procedure was found to require only the quantification of deformation induced martensite content in a tensile specimen strained until fracture using an ex situ magnetic saturation unit.  相似文献   

12.
Abstract

A recently developed continuous casting simulator and the ‘Wumsi’ hot deformation simulator have been used to carry out laboratory simulation tests to determine the as cast microstructure and the recrystallisation behaviour of a Nb–V microalloyed steel during the process of direct charging. By variation of the initial specimen thickness (between 25 and 60 mm) different values of total strain ΦΣ could be imposed to improve the coarse as cast microstructure. For a series of deformation schedules the total strain was divided systematically into two components: an austenite grain refining strain ΦγGF (above the recrystallisation stop temperature TRS) and an austenite strengthening strain ΦγS (below TRS). After hot deformation slow and accelerated cooling with simulated coiling were employed. It was found that a total strain ΦΣ>1·4 is required to ensure mechanical properties that were comparable or even superior to those found using the conventional cold charging process. The coarse as cast austenite microstructure can be refined significantly when ΦγGF=0·3–0·6. The austenite strengthening strain ΦγS represents the dominant component of the total strain if a satisfactory toughness is to be achieved. Strength properties are less sensitive to the applied strain.

MST/1872  相似文献   

13.
The high temperature flow behavior of as-extruded Ti–47.5Al–Cr–V alloy has been investigated at the temperature between 1100 °C and 1250 °C and the strain rate range from 0.001 s 1 to 1 s 1 by hot compression tests. The results showed that the flow stress of this alloy had a positive dependence on strain rate and a negative dependence on deformation temperature. The activation energy Q was calculated to be 409 kJ/mol and the constitutive model of this material was established. By combining the power dissipation map with instability map, the processing map was established to optimize the deformation parameters. The optimum deformation parameter was at 1150 °C–1200 °C and 0.001 s 1–0.03 s 1 for this alloy. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The material underwent instability deformation at the strain rate of 1 s 1, which was predicted by the instability map. The surface fracture was observed to be the identification of the instability.  相似文献   

14.
Creep at 700 °C/196 MPa and 900 or 925 °C/27.4 MPa of 21Cr–4Ni–9Mn austenitic stainless steel is determined as a function of the heat treatment. The heat treatment variation involves altering the solution heat treatment cooling rate from water quenching to cooling at 6 or 4 °C/min causing: serrated grain boundaries versus planar grain boundaries, coarser intergranular carbides, and discontinuous precipitation of grain boundary reaction zones. Water quenching causes improved creep resistance. Creep fracture and cracking is intergranular. Coarse intergranular carbides and grain boundary reaction zones cause premature void formation and cracking, this damage leading to an accelerating creep rate and lowering creep resistance of the more slowly cooled conditions. During creep, grain boundary serrations, which may otherwise contribute to improved creep, are eliminated. Determining the individual influence of grain boundary serrations on creep requires a detailed investigation of various heat treatment parameters to prevent concurrent formation of grain boundary reaction zones and serrations.  相似文献   

15.
The hot deformation behavior of a new Ni–Cr–Co based P/M superalloy was studied in the temperature range of 950–1150 °C and strain rate range of 0.0003–1 s? 1 using hot compression tests. It was characterized by true stress–true strain curves, constitutive equation, strain rate sensitivity m contour maps, power dissipation η maps and hot processing maps. The microstructural validation of processing maps was also done. The results show that the flow stress decreases with increasing temperature and decreasing strain rate. The hot deformation apparent activation energy of the Ni–Cr–Co based P/M superalloy at peak stress is 805 kJ/mol. The m and η contour maps are similar, and the values of m and η in the peak zones increase with increasing strain. When the strain is 0.5, a domain with its peak η of 40% and peak m of 25% occurs at 1050 °C and 0.0003 s? 1, which corresponds to dynamic recrystallization and can be as an optimum condition for good workability.  相似文献   

16.
Abstract

The microstructure and mechanical properties of a medium carbon Cr–Ni–Mo–Nb steel in quenched and tempered conditions were investigated using transmission electron microscopy (TEM), X-ray analysis, and tensile and impact tests. Results showed that increasing austenitisation temperature gave rise to an increase in the tensile strength due to more complete dissolution of primary carbides during austenitisation at high temperatures. The austenite grains were fine when the austenitisation temperature was <1373 K owing to the pinning effect of undissolved Nb(C,N) particles. A tensile strength of 1600 MPa was kept at tempering temperatures up to 848 K, while the peak impact toughness was attained at 913 K tempering, as a result of the replacement of coarse Fe rich M3C carbides by fine Mo rich M2C carbides. Austenitisation at 1323 K followed by 913 K tempering could result in a combination of high strength and good toughness for the Cr–Ni–Mo–Nb steel.  相似文献   

17.
In this study, various existing instability criteria were employed to delineate the unstable flow regions in modified 9Cr–1Mo steel during hot deformation. Experimental stress–strain data obtained from isothermal hot compression tests, in a wide range of temperatures (1123–1373 K) and strain rates (10−3–10 s−1), were employed to develop instability maps. The domains of these instability maps were validated through detailed microstructural study. It has been observed that Hart’s stability criterion, Jonas’s criterion and Semiatin’s criterion under-predicts the instability regions in the studied temperatures and strain rates regime. Gegel’s and Alexander’s criteria as well as Murty’s metallurgical instability criterion, on the other hand, found to over-predict the instability domains. The instability map developed based on Dynamic Materials Model criterion has been found to precisely predict the instability domains. This instability map revealed four major unstable domains. Microscopic examination in these domains revealed that the instability is manifested in the specimens either as localized deformation band primarily along one of the diagonal or inhomogeneous distribution of martensite lath in the prior austenite grains.  相似文献   

18.
Abstract

Mechanical property characterisation has been carried out on specimens of 16Cr - 5Ni - 1Mo stainless steel, subjected to various aging cycles. The heat treatment cycles involved solution treatment at 1050 ° C for 1 h followed by heating in the temperature range 400 - 750 ° C for different holding times (1 - 16 h). After heat treatment, tensile, hardness, impact, and creep tests were conducted. Specimens aged at 475 ° C exhibited maximum values of tensile strength and hardness with minimum values of ductility and impact toughness, while specimens aged at 625 ° C had maximum values of impact toughness and ductility. The results were correlated with the microstructural data presented in Part 1 of this study. Softening of the martensitic matrix at 625 ° C occurs as a result of the elimination of internal stresses, the decrease in the dislocation density, and the high volume fraction of austenite which lead to the drop in values of tensile strength and hardness. The results of the study reveal that aging at 550 ° C for 4 h gives the optimum combination of strength, hardness, ductility and toughness for this steel.  相似文献   

19.
Abstract

The characteristics of the hot deformation of Zr–2·5Nb (wt-%) in the temperature range 650–950°C and in the strain rate range 0·001–100 s?1 have been studied using hot compression testing. Two different preform microstructures: equiaxed (α+β) and β transformed, have been investigated. For this study, the approach of processing maps has been adopted and their interpretation carried out using the dynamic materials model. The efficiency of power dissipation given by [2m/(m+1)], where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified in the maps of equiaxed (α+β) and β transformed preforms. In the case of equiaxed (α+β), the stress–strain curves are steady state and the dynamic recrystallisation domain in the map occurs with a peak efficiency of 45% at 850°C and 0·001 s?1. On the other hand, the β transformed preform exhibits stress–strain curves with continuous flow softening. The corresponding processing map shows a domain of dynamic recrystallisation occurring by the shearing of α platelets followed by globularisation with a peak efficiency of 54% at 750°C and 0·001 s?1. The characteristics of dynamic recrystallisation are analysed on the basis of a simple model which considers the rates of nucleation and growth of recrystallised grains. Calculations show that these two rates are nearly equal and that the nucleation of dynamic recrystallisation is essentially controlled by mechanical recovery involving the cross-slip of screw dislocations. Analysis of flow instabilities using a continuum criterion revealed that Zr–2·5Nb exhibits flow localisation at temperatures lower than 700°C and strain rates higher than 1 s?1.

MST/3103  相似文献   

20.
The transition of solidified phases in Fe–Cr–Ni and Fe–Ni alloys was investigated from low to high growth rate ranges using a Bridgman type furnace, laser resolidification and casting into a substrate from superheated or undercooled melt. The ferrite–austenite regular eutectic growth, which is difficult to find in typical production conditions of stainless steels, was confirmed under low growth rate conditions. The transition velocity between eutectic and ferrite cell growth had a good agreement predicted by the phase selection criterion. Which of either ferrite or austenite is easier to form in the high growth range was discussed from the point of nucleation and growth. Metastable austenite formation in stable primary ferrite composition was mainly a result of growth competition between ferrite and austenite. For a binary Fe–Ni system, a planar metastable austenite in the steady state, simultaneous growth such as eutectic and banded growth between ferrite and austenite in an initial transient region are confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号