首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amide maleic anhydride‐g‐liquid polybutadience (AMALPB) was synthesized using maleic anhydride‐g‐liquid polybutadience (MALPB) with ethylenediamine (EDA), and its structure was confirmed by FTIR and 1H‐nuclear magnetic resonance spectra, respectively. It was then used as a reactive toughening agent to make blends with diglycidyl end‐capped poly(bisphenol‐A‐co‐epichlorohydrin epoxy cured at room temperature. Their thermal decomposing behaviors did not show much difference because both EDA and AMALPB possessed similar aliphatic groups. All their glass transition temperatures (Tg) increased more than 10 °C than that of the neat epoxy, and with the addition of AMALPB, the blends were greatly strengthened upon heating as show from their storage moduli. When AMALPB was added at 10 wt %, its elongation at break increases to a maximum of 8.8% which was about two times higher than that of the neat epoxy, and its tensile strength also increased. However, the excessive addition of AMALPB resulted in an apparent decline in their tensile strength at content above 20%. The simultaneous improvements in both tensile strength and strain were attributed to the existence of well‐dispersed rubber particles in the continuous matrices performing plastic deformation that resulted from the chemical bonds of interfaces among the rubber particles and matrix, and meanwhile, inducing the deflection of the cracks. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45985.  相似文献   

2.
The enhancement of mechanical properties were achieved by solution blending of poly(d ‐lactide) (PDLA) and 5‐arm poly(l ‐lactide) (5‐arm PLLA). Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results indicated almost complete stereocomplex could be obtained when 5‐arm PLLA exceeded 30wt %. Tensile test results showed that the addition of 5‐arm PLLA in linear PDLA gave dramatically improvement both on tensile strength and elongation at break, which generally could not be increased simultaneously. Furthermore, this work transformed PDLA from brittle polymer into tough and flexible materials. The mechanism was proposed based on the TEM results: the stereocomplex crystallites formed during solvent evaporation on the blends were small enough (100–200 nm), which played the role of physical crosslinking points and increased the interaction strength between PDLA and 5‐arm PLLA molecules, giving the blends high tensile strength and elongation at break. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42857.  相似文献   

3.
The styrene–butadiene–styrene block copolymer (SBS)/polypropylene (PP) blends with a unique sandwich layered co‐continuous structure were prepared by melt compounding. Differing from single conventional co‐continuous and sandwich structure, this structure was formed, where pure PP and co‐continuous SBS/PP phase acting as the face sheets and core. Even though the volume content was 20 or 10 vol %, PP always amazingly formed a continuous phase in SBS/PP blends, whereas the morphology of SBS phase relatively changed from dispersed particles to continuous network as its content increased to 50 vol %. For immiscible SBS/PP blends, due to the huge difference of complex viscosity and surface tension between SBS and PP, a pure PP layer existed on the surface of blends which can be ascribed to the PP enrichment. Herein, the structure of blends with more than 50 vol % SBS was presented as sandwich layered co‐continuous structure by combining the pure PP layer and co‐continuous structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46580.  相似文献   

4.
In this article, the influence of the rheological behavior of miscible blends of a linear and a high melt strength, branched, polypropylene (HMS PP), on the cellular structure and mechanical properties of cellular materials, with a fixed relative density, has been investigated. The rheological properties of the PP melts were investigated in steady and oscillatory shear flow and in uniaxial elongation in order to calculate the strain hardening coefficient. While the linear PP does not exhibit strain hardening, the blends of the linear and the HMS PP show pronounced strain hardening, increasing with the concentration of HMS PP. Related to the cellular structure, in general, the amount of open cells, the cell size, and the width of the cell size distribution increase with the amount of linear PP in the blends. Also mechanical properties are conditioned by the extensional rheological behavior of PP blends. Cellular materials with the best mechanical properties are those that have been fabricated using large amounts of HMS PP. The results demonstrate the importance of the extensional rheological behavior of the base polymers for a better understanding and steering of the cellular structure and properties of the cellular materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42430.  相似文献   

5.
Equi‐component blends of polyacrylonitrile (PAN) and lignin, i.e., with a lignin content as large as 50 wt %, were successfully used as precursors to produce carbon fibers. Rheological measurements demonstrated that increasing lignin content in spinning solution reduced shear viscosity and normal stress, indicating a decrease of viscoelastic behavior. This was confirmed by Fourier transform infrared results that show no discernable chemical reaction or crosslinking between PAN and lignin in the solution. However, the resulting carbon fibers display a large ID/IG ratio (by Raman spectroscopy) indicating a larger disordered as compared to that from pure PAN. The macro‐voids in the lignin/PAN blend fibers typically generated during wet‐spinning were eliminated by adding lignin in the coagulant bath to counter‐balance the out‐diffusion of lignin. Carbon fibers resulting from lignin/PAN blends with 50 wt % lignin content displayed a tensile strength and modulus of 1.2 ± 0.1 and 130 ± 3 GPa, respectively, establishing that the equi‐component wet‐spun L/P‐based carbon fibers possessed tensile strength and modulus higher than 1 and 100 GPa. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45903.  相似文献   

6.
The gloss properties of the polycarbonate (PC)/poly(methyl methacrylate‐acrylonitrile‐butadiene‐styrene) (MABS) blend with styrene‐acrylonitrile‐co‐glycidyl methacrylate (SAN‐co‐GMA) as a compatibilizing agent were investigated. For the PC/poly(MABS)/SAN‐co‐GMA (65/15/20, wt %) blend surface, the reduction of gloss level was observed most significantly when the GMA content was 0.1 wt %, compared with the blends with 0.05 wt % GMA or without GMA content. The gloss level of the PC/poly(MABS)/SAN‐co‐GMA (0.1 wt % GMA) blend surface was observed to be 35, which showed 65% lower than the PC/poly(MABS)/SAN‐co‐GMA blend without GMA content. The gloss reduction was most probably caused by the insoluble fractions of the PC/poly(MABS)/SAN‐co‐GMA blend that were formed by the reaction between the carboxylic acid group in poly(MABS) and epoxy group in SAN‐co‐GMA. The results of optical and transmission electron microscope analysis, spectroscopy study, and rheological properties supported the formation of insoluble structure of the PC/poly(MABS)/SAN‐co‐GMA blend when the GMA content was 0.1 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46450.  相似文献   

7.
Liquid oxidized poly(1,2‐butadiene) (LOPB) with multi epoxy groups is synthesized to modify diglycidyl end‐caped poly(bisphenol A‐co‐epichlorohydrin) (DGEBA) cured by 4,4′‐diaminodiphenyl sulfone (DDS). FTIR spectra shows that DGEBA and LOPB can be effectively cured by DDS, and the epoxide rubber particles are evenly distributed in the composites till their addition up to 20 wt % of DGEBA as seen from the scanning electron microscope (SEM). Their decomposition temperatures (Td) increase with the increase in LOPB addition at around 10 wt % of DGEBA while the Td for the composite containing 20 wt % LOPB of DGEBA is lower than that of the neat epoxy. The addition of LOPB improves their storage moduli and especially these values at temperatures higher above 150 °C; all the composites exhibit higher glass transition temperature (Tg) than that of the neat epoxy, and the maximum Tg reaches up to 255 °C for the composite containing 15 wt % LOPB of DGEBA. The incorporation of LOPB effectively decreases their dielectric constants and the composite with 10 wt % LOPB of DGEBA possesses the lowest one. The synergic improvements in their various properties are attributed to the networks formation via covalent linkage between the two phases in these reactive blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44689.  相似文献   

8.
A series of thermal insulation, acoustic absorption isocyanate‐based lightweight polyimide (PI) foams with 4,4′‐diaminodiphenyl ether (ODA) units were prepared from polyaryl polymethylene isocyanate (PAPI) and the esterification solution derived from pyromellitic dianhydride (PMDA) and ODA. The structures and properties of the PI foams prepared with different molar ratio of ODA/PMDA were investigated in detail. The results show that the ODA units have great influence on the foam properties. With the increase of the ODA units, the density decreases firstly and then increases. When the molar ratio of ODA/PMDA is 3/10, the foam reaches the minimum density (13.7 kg/m3). Moreover, with increasing the ODA units, the acoustic absorption properties increase firstly and then decrease owing to the variation of the average cell diameter of the PI foams. All PI foams show excellent thermal stability, and the 5% and 10% weight loss temperature are in the range of 250–270 °C and 295–310 °C, respectively. In addition, the PI foams present low thermal conductivity and thermal diffusivity. Furthermore, the mechanical property was also evaluated and the compressive strength of the PI foams is in the range of 33.0–45.7 kPa. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46029.  相似文献   

9.
Poly(lactic acid) (PLA) was melt blended with thermoplastic elastomer (TPE) styrene–ethylene–butylene–styrene‐g‐maleic anhydride (SEBS‐g‐MA) copolymer using a micro compounder which used melt recirculation approach for efficient dispersion of SEBS‐g‐MA in PLA. The SEBS‐g‐MA volume fraction (Φd) was varied between 0.07 and 0.48. Dynamic mechanical analysis showed 10.4 °C decrease in glass transition temperature at Φd = 0.48. Differential scanning calorimetry results exhibited shift in cold crystallization temperature to a higher temperature in the presence of SEBS‐g‐MA. Thermogravimetric analysis presented enhanced thermal stability of PLA/SEBS‐g‐MA blends. Tensile strength and modulus decreased while elongation‐at‐break and Izod impact strength increased in the blends. Theoretical models were employed to analyze the tensile properties of the blends in order to evaluate the blend structure. The microstructural attributes were characterized by wide‐angle X‐ray diffraction, Fourier‐transform infrared spectroscopy, and scanning electron microscopy of cryofractured, impact fractured, and tensile fractured surfaces. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45644.  相似文献   

10.
Natural rubber–silica [W(NR–SiO2)] composites were prepared by wet‐compounding technology with liquid natural rubber (LNR) as a compatibilizer. The effects of the LNR content and wet‐compounding technology on the filler dispersion, Payne effect, curing characteristics, mechanical properties, and interfacial interactions were investigated. The results show that the incorporation of LNR promoted vulcanization and decreased the Payne effect of the W(NR–SiO2) composites. With the addition of 5 phr LNR, the remarkable improvements in the mechanical properties of the W(NR–SiO2) vulcanizates were correlated with the improved silica dispersion and strengthened interfacial bonding. Furthermore, the W(NR–SiO2) vulcanizates containing LNR exhibited improvements in both the wet‐skid resistance and rolling‐resistance performance. The interfacial interactions, quantitatively evaluated by the Mooney–Rivlin equation and Lorenz–Park equation on the basis of the rubber elasticity and reinforcement theory, were strengthened in the presence of LNR. Accordingly, an interfacial structural model was proposed to illustrate the improvements in the mechanical properties of the W(NR–SiO2) composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46457.  相似文献   

11.
Triple‐shape‐memory polymers are capable of memorizing two temporary shapes and sequentially recovering from the first temporary shape to the second temporary shape and eventually to the permanent shape upon exposure to a stimulus. In this study, unique three‐component, multilayered films with an ATBTA configuration [where A is polyurethane (PU), B is ethylene vinyl acetate (EVA), and T is poly(vinyl acetate) (PVAc)] were produced as a triple‐shape‐memory material via a forced‐assembly multilayer film coextrusion process from PU, EVA, and PVAc. The two well‐separated thermal transitions of the PU–EVA–PVAc film, the melting temperature of EVA and the glass‐transition temperature of PVAc, allow for the fixing of the two temporary shapes. The cyclic thermomechanical testing results confirm that the 257‐layered PU–EVA–PVAc films possessed outstanding triple‐shape‐memory performance in terms of the shape fixity and shape‐recovery ratios. This approach allowed greater design flexibility and simultaneous adjustment of the mechanical and shape‐memory properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44405.  相似文献   

12.
The oriented “shish–kebab” structure and β‐crystal can enhance the mechanical properties of polypropylene products. In this regard, equipment and β‐nucleation agents have been developed or modified to form shish–kebab and β‐crystal. However, the effect of shish–kebab/β‐crystal proportion on the mechanical properties of polypropylene remains unclear. The answer is crucial but remains a challenge because of the difficulty in manipulating the shish–kebab proportion. In this work, we used a self‐made multiflow vibrate‐injection molding, which can provide a controllable shear flow, to produce samples with different shear‐layer thicknesses. The shish–kebab proportion was represented by R, which is the thickness ratio of the shear layer to that of the whole sample. Results showed that the tensile strength exponentially increased, whereas the elongation at break exponentially decreased, with R. The impact strength remained constant with R, indicating that the shish–kebab and β‐crystal possessed similar toughening effects. This work proposes a schematic to interpret the strengthening mechanism involved and presents a method of establishing and controlling the mechanical properties of polypropylene samples by using shish–kebab structures and β‐crystals. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45052.  相似文献   

13.
The present article discloses the properties improvement in PP/PA 6 blends by new type experimental coupling additives. By the experimental agents especially the tensile properties could be improved. For example, the tensile strength and the elongation were 16.5 MPa and 4.4% without additive, which increased to 25.5, 20.1, 46.8 MPa and 8.1, 6.4, 8.6% in specimens containing polyalkenyl‐poly‐maleic‐anhydride‐amide, polyalkenyl‐poly‐maleic‐anhydride‐ester, and MA‐grafted‐low‐polymer additives, respectively. DSC curves shows that compatibilizers influenced thermal properties of the polymer blends and reveal affecting of crystalline phase formation process in the blends due to the compatibilization step. Additives A and B rather leads to influencing of PA crystallinities. According to the SEM and FTIR analysis well separated polypropylene and polyamide phases was observed in case of specimens absence of additives but only one well distributed phase by the applying of the synthetized coupling agents. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
We investigated the phase separation, cure kinetics and thermomechanical properties of diglycidyl ether of bisphenol‐A/4,4′‐diaminodiphenylsulfone/poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer (TBCP) blends. Fourier transform infrared spectroscopy, differential scanning calorimetry, and atomic force microscopy revealed that the blends exhibited heterogeneous phase morphology in which the TBCP formed dispersed domains in epoxy matrix, due to reaction induced phase separation. A fraction of phase‐separated PEO phase underwent partial crystallization whereas another fraction formed interphases between the dispersed domains and epoxy matrix. Moreover, the dispersed PEO chains improved the compatibility and interfacial adhesion between the matrix and domains and, consequently, significantly improved the mechanical properties of epoxy resin. Furthermore, the thermal degradation studies and contact angle measurements disclosed that the dispersed domains were well protected by the epoxy matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44406.  相似文献   

15.
Bromo‐substituted polyaniline (Br‐PANI) is prepared by a novel strategy in which PANI is used as raw material, potassium bromate and potassium bromide as brominate regents. The obtained Br‐PANI is characterized by scanning electron microscopy, X‐ray photoelectron spectroscopy, elemental analysis, FTIR, UV–vis spectra, and TGA. The results clearly indicate that Br has successfully attached to the benzene ring of PANI by chemical bond. The behavior of Br‐PANI toward bacteria is characterized by plate counting, minimal inhibitory concentration, and minimal bactericidal concentration methods. The experimental results indicate that both doped and dedoped Br‐PANIs have long‐term antibacterial activities as compared to doped/dedoped PANI. What's more, the antibacterial abilities increase with increasing the Br/N molar ratio of the Br‐PANI. Thus Br‐PANI should be a kind of efficient and environmentally friendly antibacterial agent. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45657.  相似文献   

16.
In this work, the synergistic effects of β‐modification and impact polypropylene copolymer (IPC) on brittle–ductile (B–D) transition behavior of polypropylene random copolymer (PPR) have been investigated. It is interesting to find that adding both IPC and β‐nucleating agent into PPR has three effects: (i) leading to a significant enhancement in β‐crystallization capability of PPR, (ii) contributing to the shift of B–D transition to lower temperatures, (iii) increasing the B–D transition rate. The reason for these changes can be interpreted from the following two aspects. On one hand, the transition of crystalline structure from α‐form to β‐form reduces the plastic resistance of PPR matrix, thus causing the initiation of matrix shear yielding much easier during the impact process. On the other hand, the well dispersed rubbery phase in IPC with high molecular mobility at relatively low temperatures is beneficial to the shear yielding of PPR matrix and, subsequently, the great improvement in impact toughness of the ternary blends. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Parts produced by extrusion‐based additive manufacturing experience the disadvantage of consisting of many weld‐lines, which consequently downgrade their mechanical properties. This work aims at maximizing the strength of printed parts by considering and improving the intra‐ and inter‐layer cohesion between adjacent strands. Therefore, printed poly(lactic acid) specimens were characterized by means of a particular tensile test setup, and the inter‐layer cohesion of printed specimens was evaluated by means of the double cantilever beam test. A detailed parametric statistical evaluation, which included printing temperatures, layer thicknesses, and layer‐designs, was complemented by the material's viscosity data and the analysis of the specimens' fracture surfaces and cross‐sections. An optimal layer‐design was found to be a key parameter in the optimization of strength with regard to different loading directions. Additionally, the maximization of the cohesion leads to a tremendous improvement in the mechanical performance of the printed parts, resulting in strengths of roughly 90% of those of compression‐molded parts. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45401.  相似文献   

18.
The processing and properties of layered double hydroxides (LDHs)‐containing polypropylene (PP) composites have been studied extensively. However, no detailed studies have reported on how stearic acid (SA)‐intercalated and SA‐coated LDHs influence the properties of melt‐processed PP/LDH composites. Here, four different types of LDHs: synthesized (cLDH1) and commercial (cLDH2) SA‐coated LDH, SA‐intercalated LDH (iLDH), and unmodified LDH (nLDH), were used to fabricate composites using a master‐batch‐dilution technique in a twin‐screw extruder. The characterization results showed that microcomposites were formed when cLDH2 and nLDH were used, whereas nanocomposites were formed when iLDH and cLDH1 were used. Strong nucleating behavior was observed for the nLDH‐, cLDH1‐, and cLDH2‐containing composites, whereas iLDH delayed the crystallization process of the PP matrix. A significant improvement in modulus, with a balance of tensile and impact strengths, was observed in the case of the cLDH1‐containing composite, whereas the nLDH‐containing composite showed good improvement in temperature‐dependent load‐bearing capacity. On the other hand, the PP/iLDH composite showed a remarkable improvement in thermal stability and a reduction in the peak‐heat‐release rate. Therefore, this study gives us an opportunity to design PP composites with desired properties by the judicious choice of LDH, which further widens the application of PP matrices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45024.  相似文献   

19.
The mechanical properties of films prepared from model high‐glass‐transition‐temperature (Tg)/low‐Tg latex blends were investigated with tensile testing and dynamic mechanical analysis. Polystyrene (PS; carboxylated and noncarboxylated) and poly(n‐butyl methacrylate‐co‐n‐butyl acrylate) [P(BMA/BA); noncarboxylated] were used as the model high‐Tg and low‐Tg latexes, respectively. Carboxyl groups were incorporated into the PS latex particles to alter their surface properties. It was found that the presence of carboxyl groups on the high‐Tg latex particles enhanced the Young's moduli and the yield strength of the PS/P(BMA/BA) latex blend films but did not influence ultimate properties, such as the stress at break and maximum elongation. These phenomena could be explained by the maximum packing density of the PS latex particles, the particle–particle interfacial adhesion, and the formation of a “glassy” interphase. The dynamic mechanical properties of the latex blend films were also investigated in terms of the carboxyl group coverage on the PS latex particles; these results confirmed that the carboxyl groups significantly influenced the modulus through the mechanism of a glassy interphase formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2788–2801, 2002  相似文献   

20.
The tear resistance of the polypropylene homopolymer (HPP)/ethylene 1‐octene copolymer (POE) alternating multilayered sheets, which were prepared through multilayered coextrusion, was evaluated. Polarized optical microscope (POM) photographs revealed that HPP and POE layers aligned alternately vertical to the interfaces and continuously parallel to the extrusion direction. Tear results demonstrated the conventional blends had less tear‐resistant than the multilayered samples. Large plastic deformation of HPP layer occurred in the multilayered structure during the stable crack growth, causing the tear energy to increase with the number of layers increasing. The measurements of PCMW2D IR and WAXD revealed that the large plastic deformation had a direct relationship with the crystal structure and termination of micro‐cracks by interface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43298.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号