首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel molecularly imprinted electrochemical sensor was developed for the sensitive and selective determination of ampicillin (AMP). The sensor was prepared on a platinum electrode modified with multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), and a thin film of molecularly imprinted polymers (MIPs). MWCNTs and AuNPs were introduced to enhance the sensor's electronic transmission and sensitivity. The molecularly imprinted polymer (MIP) was synthesized using AMP as the template molecule, methacrylic acid as functional monomer, and ethylene glycol maleic rosinate acrylate (EGMRA) as cross‐linker. The performance of the proposed imprinted sensor was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The results showed that the imprinted film displayed a fast and sensitive response to AMP. Under optimal conditions, response peak current had a linear relationship with the concentration of AMP in the range of 1.0 × 10?8 mol/L to 5.0 × 10?6 mol/L and a detection limit of 1.0 × 10?9 mol/L (S/N = 3). This imprinted sensor was used to detect AMP in food samples with recoveries of 91.4–105%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40613.  相似文献   

2.
An electrochemical molecularly imprinted polymer (MIP) sensor for detecting the existence of epigallocatechin‐3‐gallate (EGCG) in tea and its products was successfully developed on the basis of a glassy carbon electrode modified with an electropolymerized nonconducting poly(o‐phenylenediamine) film. The properties of the electrode were characterized by cyclic voltammetry, differential pulse voltammetry, and infrared spectroscopy. The template molecules could be rapidly and thoroughly removed by methanol/acetic acid. The linear response range for EGCG was 5.0 × 10?7–1.0 × 10?4 mol/L, and the limit of detection was as low as 1.6 × 10?7 mol/L. The prepared MIP sensor could discriminate between EGCG and its analogs. In addition, satisfactory results were obtained in the detection of real tea samples. The results of our investigation indicate that the MIP sensor was useful for the determination of EGCG with excellent selectivity, high sensitivity, repeatability, and reproducibility. This MIP sensor provides the potential for monitoring the variation of EGCG content during the industrial processes and for predicting the quality of tea and its products. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Cellulose derivative (MPCN) modified by 1,5‐diaminoethyl‐3‐hydroxy‐1,5‐diazacycloheptane (DADN) was prepared and characterized by scanning electron microscopy and elemental, and infrared analysis. MPCN and its Cu2+, Pb2+ complexes were characterized by thermogravimetric and differential thermal analysis. The coordination adsorption behavior of MPCN with divalent copper and lead ions was determined. The effects of temperature, initial pH value, and the concentration of MPCN ligand to the equilibrium adsorption were discussed. The optimum pH range of the coordination adsorption of MPCN with Cu2+ and Pb2+ is 5–6. The rate constants of the coordination reaction were found. At 323 K, the rate constant is 1.0 × 10−3 and 7.0 × 10−4 s−1 for Cu2+ and Pb2+, respectively. The thermodynamic parameters of the coordination reaction were obtained based on the experiment data of the adsorption isotherms. The coordination reaction was performed spontaneously from the data of ΔG, as follows: −21.65 and −19.41 kJ/mol and ΔS, 87.06 and 67.92 J/mol K for Cu2+ and Pb2+, respectively. The coordination ratio of DADN coordination group immobilized on cellulose beads with either metal ion is about 1 : 2 from the plot of the relation of lgD versus lgL and the capacity of saturation adsorption. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1278–1285, 1999  相似文献   

4.
A facile and green approach is used to synthesize polydopamine (PDA) functionalized reduced graphene oxide (RGO) via the self‐polymerization of dopamine (DA) under alkaline conditions. The obtained reduced RGO/PDA composite facilitate Au precursor adsorption. Then Au nanoparticles are reduced and assemble onto the surface of RGO/PDA composite form reduced RGO/PDA/gold (RGO/PDA/Au) nanocatalysts. After that, a sensitive electrochemical sensor for baicalein is fabricated based on RGO/PDA/Au nanocatalysts. In this method, the hydroxyl units of PDA can form hydrogen bonding with the phenolic hydroxyl groups of baicalein, making baicalein easily adsorb on the modified electrode surface to enhance the electrochemical response. The electrochemical mechanism of baicalein on the RGO/PDA/Au nanocatalysts modified GCE is thoroughly investigated by cyclic voltammetry. The fabricated electrochemical sensor show good electrochemical activity for baicalein. The linear range of baicalein is 1 × 10?8 to 15 × 10?6 mol L?1 with the detection limit of 3.1 × 10?9 mol L?1. Furthermore, the proposed electrochemical sensor can be used to detect real sample. The results reveal that this method provides a new avenue for electrochemical investigation of baicalein in biochemical, pharmaceutical, and clinical research. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 46720.  相似文献   

5.
The solution polymerization of acrylamide (AM) on cationic guar gum (CGG) under nitrogen atmosphere using ceric ammonium sulfate (CAS) as the initiator has been realized. The effects of monomer concentration and reaction temperature on grafting conversion, grafting ratio, and grafting efficiency (GE) have been studied. The optimal conditions such as 1.3 mol of AM monomer and 2.2 × 10?4 mol of CAS have been adopted to produce grafted copolymer (CGG1‐g‐PAM) of high GE of more than 95% at 10°C. The rates of polymerization (Rp) and rates of graft copolymerization (Rg) are enhanced with increase in temperature (<35°C).The Rp is enhanced from 0.43 × 10?4 mol L?1 s?1 for GG‐g‐PAM to 2.53 × 10?4 mol L?1 s?1 for CGG1‐g‐PAM (CGG1, degree of substitute (DS) = 0.007), and Rg from 0.42 × 10?4 to 2.00 × 10?4 mol L?1 s?1 at 10°C. The apparent activation energy is decreased from 32.27 kJ mol?1 for GG‐g‐PAM to 8.09 kJ mol?1 for CGG1‐g‐PAM, which indicates CGG has higher reactivity than unmodified GG ranging from 10 to 50°C. Increase of DS of CGG will lead to slow improvement of the polymerization rates and a hypothetical mechanism is put forward. The grafted copolymer has been characterized by infrared spectroscopy, thermal analysis, and scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3715–3722, 2007  相似文献   

6.
Poly(N‐acetylaniline)/poly(4‐styrenesulfonic acid‐co‐maleic acid) (PNAANI/PSSMA) composite film was prepared by cyclic voltammetry (CV), and was characterized by FTIR and X‐ray photoelectron spectrum (XPS). The electroactivity of the composite film was high in neutral and basic solutions, and it had been used for amperometric determination of ascorbic acid (AA). Compared with pure PNAANI film, the catalytic activity of the composite film was much better. AA was detected amperometrically in sodium citrate buffer at a potential of 0.3 V (versus SCE). The response current was proportional to the concentration of ascorbic acid in the range of 4.7 × 10?6 to 5.0 × 10?5M and 5.0 × 10?5 to 2.5 × 10?3M, respectively, with the detection limit of 1.9 × 10?6 mol L?1 at a signal to noise ratio 3. In addition, the stability and reusability of the composite film were performed well, and it was satisfying to be used for determination of AA in real fruit juice samples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The optimum conditions for grafting N‐vinyl‐2‐pyrrolidone onto dextran initiated by a peroxydiphosphate/thiourea redox system were determined through the variation of the concentrations of N‐vinyl‐2‐pyrrolidone, hydrogen ion, potassium peroxydiphosphate, thiourea, and dextran along with the time and temperature. The grafting ratio increased as the concentration of N‐vinyl‐2‐pyrrolidone increased and reached the maximum value at 24 × 10?2 mol/dm3. Similarly, when the concentration of hydrogen ion increased, the grafting parameters increased from 3 × 10?3 to 5 × 10?3 mol/dm3 and attained the maximum value at 5 × 10?3 mol/dm3. The grafting ratio, add‐on, and efficiency increased continuously with the concentration of peroxydiphosphate increasing from 0.8 × 10?2 to 2.4 × 10?2 mol/dm3. When the concentration of thiourea increased from 0.4 × 10?2 to 2.0 × 10?2 mol/dm3, the grafting ratio attained the maximum value at 1.2 × 10?2 mol/dm3. The grafting parameters decreased continuously as the concentration of dextran increased from 0.6 to 1.4 g/dm3. An attempt was made to study some physicochemical properties in terms of metal‐ion sorption, swelling, and flocculation. Dextran‐gN‐vinyl‐2‐pyrrolidone was characterized with infrared spectroscopy and thermogravimetric analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
A novel modified electrode was fabricated with 9‐aminoacridine by electropolymerization in the phosphate buffer solution (PBS) (pH 7.4) and was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic effect and high stability toward the electrochemical oxidation of dopamine (DA) and ascorbic acid (AA). Also, it showed a high stability for the determination of DA and AA simultaneously. Well‐separated voltammetric peaks were observed for DA and AA on the modified electrode. The separation of two anodic peaks was 170 mV, which was large enough to eliminate the interference of AA and determine DA. The differential pulse voltammograms (DPV) were used for the measurement of DA by means of the poly(9‐aminoacridine)‐modified electrode in PBS at pH 7.4. A linear response toDA was observed in the concentration range from 1.5 × 10?6 to 3.5 × 10?3 mol L?1 with a correlation coefficient of 0.9998 and a detection limit (S/N = 3) of 1.0 × 10?7mol L?1. The proposed method was used to determine DA in DA‐hydrochloride injection and showed excellent sensitivity and recovery. The ease of fabrication, good reproducibility, high stability, and low cost of the modified electrode are the promising features of the proposed sensor. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3864–3870, 2007  相似文献   

9.
A novel poly(crystal violet)/graphene-modified glassy carbon electrode (PCV/Gr/GCE) was fabricated for the simultaneous determination of Pb2+ and Cd2+. The electrochemical behavior of both species at the PCV/Gr/GCE was investigated employing cyclic voltammetry. In acetate buffer, the modified electrode showed an excellent electrocatalytical effect on the oxidation of both species and was further used for their determination. Under optimized analytical conditions, the oxidation peak currents of Pb2+ and Cd2+ obtained by differential pulse voltammetry in pH 4.6 acetate buffer showed a linear relationship with their concentrations in the ranges of 2.00 × 10?8–1.95 × 10?5 mol L?1 and 4.00 × 10?8–5.58 × 10?5 mol L?1, respectively. The developed method has excellent sensitivity, selectivity, reproducibility and has been successfully applied to the determination of Pb2+ and Cd2+ in water samples.  相似文献   

10.
Biosensor detecting techniques have attracted much attention in the content determination of H2O2, which has been used illegally as a food additive. An electrochemical biosensing membrane for the detection of H2O2 was developed with C6‐OH of chitosan immobilized cyclodextrin derivates (6‐CD–CTS), which possessed a high cyclodextrin loading capacity (2.12 × 10?4 mol/g), as the carrier. The biosensor was prepared through the inclusion of ferrocene as the electron mediator in a hydrophobic cavity of cyclodextrin and crosslinking catalase (CAT) to 2‐NH2 of 6‐CD–CTS. The ferrocene‐included complex was evaluated by ultraviolet–visible spectrophotometry and thermogravimetric analysis. Its electrochemical behavior was also studied. The impact of the reaction conditions on the CAT immobilization capacity was evaluated. When previous membrane was used to detect the concentration of H2O2 (CH2O2), we found that the catalysis of CAT and the signal amplification of ferrocene had a major impact on the cyclic voltammograms. The optimal working pH of the modified electrode was 7.0. The peak current (I) had a linear relationship with the H2O2 concentration (CH2O2) in the range 1.0 × 10?4 to 1.0 × 10?3 mol/L. The linear regression equation was I = 0.00475CH2O2 ? 0.03025. The detection limit was 10?6 mol/L. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41499.  相似文献   

11.
The electrochemical properties of neutral (dedoped) and oxidized (doped) poly(1,11‐bis(1,1‐pyrrole)‐3,6,9‐trioxaundecane) (poly‐ I ) film electrodes were investigated using cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques. Poly‐ I was deposited on glassy carbon electrode (GCE) from acetonitrile solution containing 5.0 × 10?3M 1,11‐bis(1,1‐pyrrole)‐3,6,9‐trioxaundecane ( I ) and 0.1M LiClO4 supporting electrolyte. Doped poly‐ I exhibits a single semicircle in its complex‐capacitance plots, indicating a single dominant ion transport process, together with high capacitance values. These features make this polymer film a candidate for an energy storage material. Also, poly‐ I can be a candidate as a sensory material for the detection of Ag+ based on impedance parameters. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

12.
The polypyrrole and polyaniline copolymer coating (PPy‐PAni) and PPy‐PAni doped with sodium molybdate copolymer coating ( ) were synthesized on stainless steel by cyclic voltammetry. The effect of molybdate on the passivation of stainless steel was investigated by linear sweep voltammetry in 0.2 mol L?1 of oxalic acid. The corrosion prevention performances of these copolymer coatings for stainless steel were investigated by linear sweep voltammetry, electrochemical impedance spectroscopy in 1 mol L?1 of sulfuric acid, and potentiodynamic polarization in 0.1 mol L?1 of hydrochloric acid. Copolymer coating doped with molybdate could accelerate the formation of the passive oxide film and have better corrosion prevention efficiencies than PPy‐PAni coating on stainless steel. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40602.  相似文献   

13.
This study presents an automatic batch mode (i.e., off‐line) multi‐angle light scattering (MALS) method for the molecular weight (MW) determination of ultra‐high MW (UHMW) polyacrylamide (PAM) homopolymer and acrylamide copolymers. This method combines a MALS detector with a sample dilution and injection device that automatically delivers a concentration gradient from a stock solution. The automation makes it practical to use the batch MALS method for routine MW analysis of UHMW polymers. The automatic batch MALS analyses of a series of poly(sodium acrylate‐co‐acrylamide) (30:70 mol %) in 1.0M NaCl show a non‐linear Mark‐Houwink relation in the MW range of 1.2 × 106 to 12.6 × 106 g mol?1. The entire molecular weight range can be fit with a quadratic relation or two linear equations, one for molecular weight up to 5.3 × 106 g mol?1 and the other from 5.3 × 106 to 12.6 × 106 g mol?1. The non‐linear Mark‐Houwink relation suggests that the extrapolation of the Mark‐Houwink equation beyond the measured MW range into the UHMW regions can significantly overestimate the MW of the UHMW polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43748.  相似文献   

14.
A one‐phase synthesis of AuNPs‐polymer nanocomposites using HAuCl4 as the precursor is reported in this article. A flexible polymer, poly(2‐(4‐(di(1H‐indol‐3‐yl)methyl)phenoxy) ethyl methacrylate) (PMPEM), containing indole groups on the side chain was utilized as both a reducing reagent and soft template in the system. The PMPEM‐Au nanocomposites with three different sizes of AuNPs (25–50, 2, and 5 nm) were obtained just through choosing different solvents such as toluene, tetrahydrofuran (THF), and N,N‐dimethylformamide, respectively. Nanocomposites including the size of 25–50 and 2 nm AuNPs showed strong NLO absorption and refraction behaviors. The nonlinear refractive index n2 of PMPEM‐Au nanocomposites prepared in toluene and THF were 9.35 × 10?11 and 1.85 × 10?10 m2/W, third‐order susceptibility χ(3) were 2.55 × 10?11 and 4.26 × 10?11 esu, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
In this article, graft copolymerization of N‐vinyl‐2‐pyrrolidone onto xanthan gum initiated by potassium peroxydiphosphate/Ag+ system in an aqueous medium has been studied under oxygen free nitrogen atmosphere. Grafting ratio, grafting efficiency, and add on increase on increasing the concentration of potassium peroxydiphosphate (2.0 × 10?3 to 12 × 10?3 mol dm?3), Ag+(0.4 × 10?3 to 2.8 × 10?3 mol dm?3), and hydrogen ion concentration from 2 × 10?3 to 14.0 × 10?3 mol dm?3. Maximum grafting has been obtained when xanthan gum and monomer concentration were 0.4 g dm?3 and 16 × 10?2 mol dm?3, respectively, at 35°C and 120 min. Water swelling capacity, swelling ratio, metal ion uptake, and metal retention capacity have also been studied, and it has been found that graft copolymer shows enhancement in these properties than pure xanthan gum. The graft copolymer has been characterized by FTIR and thermal analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Heavy metal ions such as Cu2+ and Pb2+ impose a significant risk to the environment and human health due to their high toxicity and non‐degradable characteristics. Herein, Al(OH)3‐polyacrylamide chemically modified with dithiocarbamates (Al‐PAM‐DTCs) was synthesized using formaldehyde, diethylenetriamine, carbon disulfide, and sodium hydroxide for rapid and efficient removal of Cu2+ and Pb2+. The synthesized adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis, scanning electron microscopy–energy dispersive X‐ray spectroscopy analysis, and transmission electron microscope measurements. Al‐PAM‐DTCs showed rapid removal of Cu2+ (<30 min) and Pb2+ (<15 min) with high adsorption capacities of 416.959 mg/g and 892.505 mg/g for Cu2+ and Pb2+ respectively. Al‐PAM‐DTCs also had high capacities in removing suspended solids and metal ions simultaneously in turbid bauxite suspensions. FTIR, thermodynamic study, and elemental mapping were used to determine the adsorption mechanism. The rapid, convenient, and effective adsorption of Cu2+ and Pb2+ indicated that Al‐PAM‐DTCs has great potential for practical applications in purification of other heavy metal ions from aquatic systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45431.  相似文献   

17.
A type of self‐doped polyaniline derivative was successfully synthesized using an oxidative coupling polymerization approach. The structure of the electroactive polymer was investigated using Fourier transform infrared and 1H NMR spectroscopy and gel permeation chromatography. Its thermal and spectral properties were characterized using thermogravimetric analysis and UV‐visible spectroscopy. The electrochemical activity of the polymer was studied using cyclic voltammetry (CV) in 1.0 mol L?1 H2SO4 solution with various scan rates. The peak current increases linearly with scan rate from 10 to 120 mV s?1, which indicates that the electrode reaction is controlled by a surface process. In addition, the self‐doped characteristic was investigated using CV in 1.0 mol L?1 KCl solution with pH value changing from 1 to 12, and the results indicate that the polymer has excellent electrochemical activity even in neutral and alkaline environments. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Calcium alginate gel beads containing insect repellent N,N‐diethyl‐3‐methylbenzamide (CAGBDs) were modified via grafting copolymerization with a vinyl monomer. CAGBDs (5 g) were initiated with 8.5 × 10?2 mol/L potassium persulfate and 7.0 × 10?2 mol/L sodium bisulfite at the ambient temperature for 10 min, and then 6.22 mol/L acrylonitrile was added in droplets; the mixture was allowed to react at the same temperature for another 30 min. The effects of reaction conditions such as the stirring speed and monomer concentration on the modification of CAGBDs were investigated. Scanning electron microscopy analysis showed that the surface of modified CAGBDs was compact enough to keep N,N‐diethyl‐3‐methylbenzamide from touching. The release rate of N,N‐diethyl‐3‐methylbenzamide from modified CAGBDs was slower than that from unmodified CAGBDs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4850–4855, 2006  相似文献   

19.
One kind of nanocomposite consisting of graphene and polypyrrole was synthesized via a facile and mild way with the assistant of microwave irradiation. The synthesis route was embedding the polypyrrole into the graphene flakes to form a 3D structure, to achieve larger active surface and higher electro‐catalysis property. Structures and components of the composite were measured by X‐ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. A stronger electrochemical response of electrode with modified resultant was observed in the electrochemical test. Dopamine sensor based on the composite showed a sensitivity of 363 μA mM ?1 cm?2, a linear range of 1 × 10?4 M to 1 × 10?3 M , and a detection limit of 2.3 × 10?6 M (S/N = 3). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44840.  相似文献   

20.
Poly(m‐chloroaniline) (PmClAn) was synthesized by emulsion polymerization. The influences of reaction temperature and initiator concentration on polymerizations were studied. It was found that PmClAn with number‐average molecular weight of 1.85 × 103 g mol?1 was obtained by the following conditions: 80 °C, [monomer] = 0.187 × 10?3 mol l?1, [sodium lauryl sulfate] = 4.8 × 10?2 mol l?1, [potassium peroxydisulfate] = 5.6 × 10?2 mol l?1, reaction period = 2.0 h. 1H NMR, FTIR, and transmission and scanning microscopy were used for structural characterization of PmClAn. It was shown that the ratio of benzoid to quinoid units in the macromolecular chain was respectively 3:2, and that PmClAn has a typical crystalline monoclinic form. A PmClAn molecular chain configuration was also proposed on the basis of crystallographic data. Cyclic voltammetry experiments revealed the PmClAn membrane electrode electroactivity. This electroactivity increased when the polymer was proton‐doped. When Pt particles were electrodeposited onto the polymer membrane electrode, they presented a preferred orientation. Isopropanol oxidation intensities with platinized PmClAn modified electrodes were larger than with a platinized Pt electrode. We also found that oxidation occurred mainly on the Pt particles deposited on the polymer, and that the anodic peak potential changed with polymer and its doping level. These results indicated that the Pt particles interacted with the polymer and that catalytic properties could be observed. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号