首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Liquefaction is known to be an effective method for converting biomass into a polyol. However, the relationships between bark liquefaction conditions and properties of the resulting foams are unclear. In this study, polyurethane foams (PUF) were made using bark‐based polyols obtained through liquefaction reactions of bark at two different temperatures (90 and 130°C). Through systematic characterization of the PUFs the influence of the liquefied bark and liquefaction conditions on foam properties could be observed. The bark‐based foams had similar foaming kinetics, thermal stability, and glass transition temperatures compared with the PEG‐based control foam. The bark‐based PUF from the polyol obtained at the higher liquefaction temperature showed comparable specific compressive strength to the PEG‐based control foam. Lastly, both bark foams exhibited a high amount of open‐cell content, with the foam made from the lower temperature liquefied polyol having poor cell morphology. This deviation from the controls in the open‐cell content may explain the lower modulus values observed in the bark PUFs due to the lack of cell membrane elastic stretching as a strengthening mechanism. These results demonstrated the influence of the bark liquefaction conditions on foam properties, thereby providing a better fundamental understanding for the practical application of bark‐based PUFs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40599.  相似文献   

2.
Aqueous acetic acid lignin containing polyurethane (ALPU) surfactants were prepared by the replacement of some hydrophobic poly(caprolactone diol) with different concentrations of multifunctional acetic acid lignin (AL), and with dimethylol propionic acid as the hydrophilic segment. The infrared spectra, together with thermogravimetric analysis, demonstrated the presence of AL in the polyurethane (PU) chains. In addition, the effects of the AL concentration on the particle size, morphology, rheological behavior, and surface activity of the dispersions were investigated. The ALPU particles displayed a spherical morphology. With increasing AL concentration from 0 to 10 wt %, the particle size increased from 36 to 260 nm, and the unimodal distribution was detected for ALPU10 with a 10 wt % AL addition. The viscosity and shear‐thinning behavior of the ALPU dispersions decreased, and the lowest surface tension and critical micelle concentration (cmc) were detected for ALPU10. However, when the AL concentration was 15 wt % (ALPU15), the surface tension and cmc increased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1855–1862, 2013  相似文献   

3.
Bionanocomposites were prepared using d ,l ‐lactide–δ‐valerolactone–d ,l ‐lactide triblock and unmodified and modified cellulose nanowhiskers (CNs) at different loadings (0, 2, 4, 8 wt %). Poly(δ‐valerolactone) chains were grafted on CNs for modification. These were characterized by various techniques. The broadening of OH (hydroxyl) stretching region and the presence of low‐intensity peaks at 1064 cm?1 for C? O/C? C stretching vibration and 1426 cm?1 for bending vibration of CH2 group, were evident in Fourier transform infrared spectra of the nanocomposites. The increase in crystallinity was noticed as the amount of nanowhiskers was increased. The nanowhiskers having the width in the range of 80–300 nm were uniformly dispersed in the triblock matrix. The tensile strength and modulus increased by 130% and 50% respectively at 8 wt % of filler loading. The storage modulus, loss modulus, complex viscosity, and tan δ values increased with increased filler loading. Further improvement in mechanical properties was observed with the modified CNs. The modulus mapping from atomic force microscopy confirmed the effective reinforcement behavior of the nanowhiskers. Scaffold fabrication using the bionanocomposite exhibited porous nature, having a homogeneous dispersion of CNs on the surface of the scaffold. The 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay confirmed the suitability of the composite material for scaffold application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 135, 46035.  相似文献   

4.
Artificial wood films containing cellulose, xylan, and lignin were easily prepared by the dissolution of wood components in 1‐ethyl‐3‐methylimidazolium acetate followed by reconstitution with distilled water. The composition and characteristics of wood films were highly controllable and predictable through the variation of the concentration of each component in the wood solution. The water vapor solubility of the wood films was increased when the xylan content was increased and the content of lignin was decreased. The biodegradability of the artificial wood films was investigated with cellulase from Trichoderma viride. The relative degradability of the wood film prepared with 5% cellulose and 5% lignin was 42%, whereas that of the wood film made with 5% cellulose and 5% xylan was 189%. The biodegradability of cellulose in the wood films correlated well with the content of xylan and lignin, and it was enhanced when the xylan content was increased and the content of lignin was decreased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42109.  相似文献   

5.
The use of products and byproducts from the agro‐industry and forest biorefinery is essential for the development of value‐added and low environmental‐impact materials. In this study, polyurethanes were prepared using sodium lignosulfonate (NaLS) and castor oil (CO) as reagents and were used to prepare composites reinforced with lignocellulosic fibers, namely, curaua and coir fibers (30 wt %, 3 cm length, and randomly oriented). The SEM images of fractured surfaces of the composites revealed excellent adhesion at the fiber/matrix interface of both coir and curaua composites, which probably resulted from the favorable interactions between polar groups, as well as amid low polarity domains that are present in both the matrix and the reinforcements. The composites exhibited different impact/flexural and strength/flexural moduli (NaLS/CO/Curaua = 465 Jm?1/44 MPa/2 GPa; NaLS/CO/Coir = 180 Jm?1/25 MPa/1 GPa). The higher tensile strength/aspect ratio of the curaua fibers (485 MPa/259) compared with that of the coir fibers (120 MPa/130) most likely contributes to the enhanced performance of its composite. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Fuel cells are being developed to overcome the global energy crisis. The objective of this research is to prepare an environmental‐friendly and cheap material as the polymer electrolyte membrane. Coconut water was fermented by Acetobacter xylinum to produce nata‐de‐coco and the phosphorylation was carried out by microwave‐assisted reaction. The resulting membranes are characterized by ion exchange capacity, contact angle, proton conductivity, swelling index, methanol permeability, mechanical properties measurement and morphological analysis. At the optimum phosphorylation condition using 17.35 mmol of phosphoric acid, membrane showed a proton conductivity of 1.2 × 10?2 S/cm and a methanol permeability of 2.3 × 10?6 cm2/s. The tensile strength of the produced membranes increases significantly and the arrangement of the cellulosic fibers are kept well‐aligned. It is concluded that a green and sustainable natural resources can be used for preparing electrolyte membrane. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
The present study focuses on the melamine–formaldehyde (MF) coating ratio and silanization of PLA/sisal composites. Poly(lactic acid) (PLA) was melt blended with short sisal fiber with and without MF resin coating. MF was applied at different weight ratios (sisal:MF = 1:1; 1:3, and 1:5) to coat the untreated or silanized sisal fibers which were incorporated up to 20 parts per hundred resin (phr) amount in PLA. PLA/sisal composites were produced by compression molding. It was found that the sisal:MF coating ratio at 1:1 by weight improved the tensile strength and tensile modulus of the composite with 10 phr sisal by 4% and 57%, respectively, compared to the virgin PLA. The initial and final decomposition (Ti) and (Tf) of PLA with untreated sisal were changed from 330.8 and 367.1 to 336.2 and 370.4 °C, respectively, after MF‐coating (sisal:MF weight ratio = 1:1). This enhancement in thermal stability was attributed to the strong interaction between the MF and sisal fiber. The water absorption of PLA/MF–sisal composites slightly decreased with increasing sisal:MF ratio. This is due to the fact that the MF‐coating substantially reduced the hydrophilic properties of sisal. Moreover, FTIR spectra and SEM images proved that sisal fibers were coated by MF resin successfully. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45681.  相似文献   

8.
Cassava xanthogenate and their derivatives, as adsorbents to remove Pb2+ from aqueous solution, are studied based upon orthogonal factorial design. The structural and thermal properties, adsorption performance as well as equilibrium‐kinetics are comprehensively investigated with multiple tools, such as Fourier transform infrared spectroscopy, thermal gravimetric analysis (TGA), and UV–visible spectrum technique. The influence of multiple parameters, including initial Pb2+ concentrations, compositions, pH values, and temperatures, on the adsorption performance is emphasized. The crosslinked cassava xanthogenate serves as an effective bio‐sorbent to remove Pb ions from aqueous solution, allowing regeneration in dilute acid solution. The findings in this study are beneficial for the development of adsorbents from cassava waste biomass and may contribute to environment recovery in “nature‐to‐nature” manner. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39780.  相似文献   

9.
Preparation of polyurethane wood coatings based on copper‐, chromium‐, and boron (CCB) containing liquefied wood was performed, as an alternative way to manage postconsumed preservative‐contaminated wood. Additionally, we examined the possibility of improvement of selected properties of the liquefied wood‐based coatings by an addition of silica nanoparticles. The constituents of the CCB wood preservative do not exhibit an influence on a liquefaction process and on composition of the liquefied mixture. CCB also does not affect curing of the formulations containing liquefied wood and an isocyanate‐type hardener. Furthermore, influence of CCB on adhesion strength of liquefied wood‐based coatings on a wooden substrate, their hardness, and resistance to scratching and to water, acetone, and alcohol, is not exhibited. However, apart from these, from the applicative point of view, positive results, any improvement of the coating properties by the addition of silica nanoparticles is not shown. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40865.  相似文献   

10.
Effective dissolution of cellulosic macromolecules is the first predominant step to prepare functional bio‐based materials with desirable properties. In this study, we developed an improved dissolution process using a freeze‐drying pretreatment to promote the dissolution of cellulose. Rheological measurements of cellulose solutions and physicochemical characterization of regenerated cellulose films (scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, and thermogravimetric analysis) were performed. Cellulose solution prepared from 5% microcrystalline cellulose (w:v) in the solvent exhibits a Newtonian fluid character while cellulose solutions at higher concentrations show a pseudo‐plastic fluid behavior. Results from physicochemical characterization indicate that a freeze‐drying pretreatment step of cellulose leads to a complete dissolution at 5% concentration while only part of cellulose is dissolved at 10% and 15% concentrations. The results obtained indicated that the use of a freeze‐drying pretreatment step under mild conditions lead to a complete dissolution of cellulose at 5% concentration. The cellulose films prepared from 5% concentration exhibited desirable properties such as good optical transparency, crystallinity, and thermal stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44871.  相似文献   

11.
Bio‐based high performance thermosetting resins have been urgently required by cutting‐edge fields for meeting sustainable development. A new kind of high performance thermosetting resins (BA‐n) with good processability, high thermal resistance, and mechanical properties was developed based on 4,4′‐bismaleimidodiphenylmethane (BDM) and renewable bis(5‐allyloxy)‐4‐methoxy‐2‐methylphenyl)methane (ABE) from bio‐based lignin derivative. The effect of the molar ratio of allyl to imide (n) on structures and properties of BA resins were systematically researched. BA‐n resins have much better processability, thermal, and mechanical properties than their petroleum‐based counterparts, 2,2′‐diallylbisphenol A‐modified BDM (BD‐n) resins. Compared with BD‐0.86, the best available bismaleimide (BMI) resin, BA‐0.86 not only has 6 h longer process window and 13.7 °C higher glass transition temperature, but also owns the highest flexural strength and modulus among all bio‐based allyl compound‐modified BMI resins reported. The origin behind these attractive performances of BA resins is revealed by discussing the unique crosslinked structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45947.  相似文献   

12.
The objectives of this study were to prepare injection‐moulded wood‐based plastics and to characterize their mechanical properties. Injection‐moulded wood‐based plastics with satisfactory flexural (65.7 MPa) and tensile strengths (30.1 MPa) were successfully obtained through a simple reaction of mulberry branch meal with phthalic anhydride (PA) in 1‐methylimidazole under mild condition. The X‐ ray diffraction results indicated complete disruption of the crystallinity of cellulose because the pattern obtained for esterified fiber was almost a straight line without any peaks. The peaks in the Fourier transform infrared spectroscopy spectra (1738 and 748 cm?1) and NMR spectra (173.3 and 133.5 ppm) indicated the attachment of 0‐carboxybenzoyl groups onto the wood fibers via ester bonds. The differential scanning calorimetry curves showed that the glass transition temperature decreased with increasing weight percentage gain (WPG). The derivative thermogravimetric analysis curves indicated that esterified wood fiber was less thermally stable than the untreated fiber and that the component tends to be homogeneous with increasing WPG. Scanning electron microscope revealed that the fractured surfaces of most samples were smooth and uniform but that high temperature and less PA dosage could lead to the appearance of holes and cracks. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41376.  相似文献   

13.
A lignosulfonate/chitosan‐based medium density fiberboard (MDF) adhesive has been prepared using glutaraldehyde as crosslinking agent. Optimization of glutaraldehyde/chitosan mass ratio was carried out based on characterization details involving MDFs’ mechanical and dimensional performances analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X‐ray diffraction. The addition of glutaraldehyde improved the mechanical properties of the MDF significantly, while it negatively affected the dimensional properties. The MDFs using lignosulfonate/chitosan‐glutaraldehyde adhesives (LS/CS‐Glu) with glutaraldehyde/chitosan mass ratios in the range of 0.25–0.75 fulfilled the Chinese national standard for MDF. Chitosan was crosslinked with self‐polymerized glutaraldehyde through C?N linkages which resulted in the reduction of the amide bonds and hydrogen bonds between chitosan and lignosulfonate. The proposed LS/CS‐Glu adhesives can be a promising candidate for traditional MDF adhesives which contain formaldehyde. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45870.  相似文献   

14.
In this study, acrylated epoxidized flaxseed oil (AEFO) resin is synthesized from flaxseed oil, and flax fiber reinforced AEFO biocomposites is produced via a vacuum‐assisted resin transfer molding technique. Different amounts of flax fiber and styrene are added to the resin to improve its mechanical and physical properties. Both flax fiber and styrene improve the mechanical properties of these biocomposites, but the flexural strength decreases with an increase in styrene content. The mass increase during water absorption testing is less than 1.5% (w/w) for all of the AEFO‐based biocomposites. The density of the AEFO resin is 1.166 g/cm3, which increases to 1.191 g/cm3 when reinforced with 10% (w/w) flax fiber. The flax fiber reinforced AEFO‐based biocomposites have a maximum tensile strength of 31.4 ± 1.2 MPa and Young's modulus of 520 ± 31 MPa. These biocomposites also have a maximum flexural strength of 64.5 ± 2.3 MPa and a flexural modulus of 2.98 ± 0.12 GPa. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41807.  相似文献   

15.
Toxic mineral oils can migrate into foods from cardboard boxes made of recycled fibers. This is an emerging issue for the whole dry‐food‐packaging industry. Breakfast cereals, for example, are typically packaged in boxes with or without inner bags and consumed without further processing. Currently, fossil‐based high‐density polyethylene (HDPE) films are used as a major raw material for such inner bags. However, HDPE is a very poor barrier against mineral‐oil migration. Biobased coatings from cellulose nanofibrils (CNFs), hydroxypropylated xylan, and hydroxypropylated cellulose were applied onto biobased high‐density polyethylene (bio‐HDPE) films, and the mineral‐oil barrier properties were evaluated. All of the coated films significantly decreased the migration of n‐decane, isobutylbenzene, 1‐cyclohexylbutane, 1‐cyclohexylheptane, and 1‐cyclohexyldecane. Biobased barrier bags prepared from (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxy oxidized CNF coated bio‐HDPE film protected the content to a great extent from mineral‐oil migration compared to noncoated bio‐HDPE and other commercial breakfast cereal‐bag films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44586.  相似文献   

16.
Building blocks made from renewable sources attract increasing attention for the design of new polymer systems. Recently, in this particular context, cellulose nanocrystals (CNCs) have gained great interest in both academic research and industry, mainly on account of their ability to reinforce range of polymer matrices and afford nanocomposites with attractive mechanical properties. The limited thermal stability of conventionally produced cellulose nanocrystals (CNCs) has, however, so far limited the range of polymers that could be used as basis for melt‐processed CNC nanocomposites. We herein show that a commercially accessible nanocrystal source, a particular grade of microcrystalline cellulose (MCC), can easily be converted into thermally stable CNCs by ultrasonication in phosphoric acid. A scalable melt‐mixing process was used to produce nanocomposites of these CNCs with a thermoplastic polyurethane (TPU) elastomer. A significant improvement of the room temperature storage modulus from 40 MPa (neat polymer) to 120 MPa (10% w/w CNC) was observed. The introduction of CNCs not only increased the stiffness of the polymer matrix, but also improved the shape memory properties of the nanocomposite. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45033.  相似文献   

17.
Cotton stalk bark fibers (CSBF) were prepared using combined steam explosion and laccase treatment (explosion–laccase). CSBF have been applied to reinforce thermoplastic composites, but were difficult to be spun into yarns due to their inferior fineness and high stiffness. In order to improve the fineness and flexibility with a green method, explosion–laccase treatment was used to separate bark of cotton stalks. The results indicated that steam explosion at 1.7 MPa for 3 min effectively facilitated laccase penetration into the lignocellulose complex to enhance delignification without negative effects on activity of laccase. Compared with CSBF after explosion, CSBF after explosion–laccase had better fineness (31 dtex), higher aspect ratio (1110), higher tensile strength (2.81 cN/dtex), higher flexibility (321 twist/(m·dtex)), and better thermal stability, which meets the requirement of textile fibers. CSBF had higher water retention (127%) and moisture regain (10.3%) than cotton. Explosion–laccase is an effective and eco‐friendly method of preparing CSBF for textiles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45058.  相似文献   

18.
α-Cellulose extracted from jute fiber was grafted with oligo( d -lactic acid) (ODLA) via a graft polycondensation reaction in the presence of para-toluene sulfonic acid and potassium persulfate in toluene at 130 °C for 9 h under 380 mmHg. ODLA was synthesized by the ring-opening polymerization of d -lactides in the presence of stannous octoate (0.03 wt % lactide) and d -lactic acid at 140 °C for 10 h. Composites of poly( l -lactic acid) (PLLA) with the ODLA-grafted α-cellulose were prepared by the solution-mixing and film-casting methods. The grafting of ODLA onto α-cellulose was confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis of the composites was performed with FTIR spectroscopy, SEM, wide-angle X-ray diffraction, and thermogravimetric analysis. The distribution of the grafted α-cellulose in the composites was uniform and showed better compatibility with PLLA through intermolecular hydrogen bonding. Only homocrystalline structures of PLLA were present in the composites, and the thermal stability increased with increasing percentage of grafted α-cellulose. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47424.  相似文献   

19.
Fully bio‐based and biodegradable composites were compression molded from unidirectionally aligned sisal fiber bundles and a polylactide polymer matrix (PLLA). Caustic soda treatment was employed to modify the strength of sisal fibers and to improve fiber to matrix adhesion. Mechanical properties of PLLA/sisal fiber composites improved with caustic soda treatment: the mean flexural strength and modulus increased from 279 MPa and 19.4 GPa respectively to 286 MPa and 22 GPa at a fiber volume fraction of Vf = 0.6. The glass transition temperature decreased with increasing fiber content in composites reinforced with untreated sisal fibers due to interfacial friction. The damping at the caustic soda‐treated fibers‐PLLA interface was reduced due to the presence of transcrystalline morphology at the fiber to matrix interface. It was demonstrated that high strength, high modulus sisal‐PLLA composites can be produced with effective stress transfer at well‐bonded fiber to matrix interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40999.  相似文献   

20.
This work analyzes the differences in the final properties of two waterborne polyurethanes (WBPU) prepared with two macrodiols of different chemical structure, but similar molecular weight, as well as the variations caused by incorporating low percentages of microfibrillated cellulose nanocrystals. One of the polyurethanes was based on a synthetic but biodegradable precursor (polycaprolactone diol, PCL) and a second one based on a bio‐based macrodiol derived from castor oil (CO1). The bio‐based material presented higher mechanical properties at room temperature than the synthetic one, with the Young's modulus (MPa) ranging from 2.23 ± 0.09 to 84.88 ± 0.96 for the PCL and bio‐based WBPUs, respectively. Additionally, the PCL‐based WBPU showed to be more sensitive to the incorporation of cellulose than the bio‐based WBPU, and it also suffered changes during time due to delayed crystallization. The behavior of the two systems were compared and related to the different structure of the macrodiols that led to different interfacial interactions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44207.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号