首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(L‐lactic acid) (PLLA) ultrafiltration (UF) membrane was fabricated by immersion precipitation method using Tween 80 as an additive. Membrane structure was characterized by scanning electron microscopy (SEM), porosity and pore size measurement, and atomic force microscopy (AFM). Membrane performance was evaluated by pure water flux, molecular weight cut‐off, and tensile test. It was found that the addition of Tween 80 into the casting solution significantly increased the permeability and molecular weight cut‐off of membrane. Tensile test confirmed that the as‐prepared PLLA membranes exhibited acceptable mechanical properties for ultrafiltration. Further, the role of Tween 80 in the process of membrane formation was analyzed and proposed. The addition of Tween 80 favored the formation of larger pores by interrupting the polymer chain entanglement and improving the miscibility between solvent and coagulant. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44428.  相似文献   

2.
Poly(lactic acid) (PLA) is a biobased polymer made from biomass having high mechanical properties for engineering materials applications. However, PLA has certain limited properties such as its brittleness and low heat distortion temperature. Thus, the aim of this study is to improve toughness of PLA by blending with poly(butylene succinate‐co‐adipate) (PBSA), the biodegradable polymer having high toughness. Polymer blends of PLA and PBSA were prepared using a twin screw extruder. The melt rheology and the thermal property of the blends were examined. Further the blends were fabricated into compression molded parts and melt‐spun fiber and were subjected to tensile and impact tests. When the PBSA content was low, PBSA phase was finely dispersed in the PLA matrix. On the other hand, when the PBSA content was high, this minor phase dispersed as a large droplet. Mechanical properties of the compression molded parts were affected by the dispersion state of PBSA minor component in PLA matrix. Impact strength of the compression molded parts was also improved by the addition of soft PBSA. The improvement was pronounced when the PBSA phase was finely dispersed in PLA matrix. However, the mechanical property of the blend fibers was affected by the postdrawing condition as well as the PBSA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41856.  相似文献   

3.
Biodegradable poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends and PLA/PBAT/Al2O3 nanocomposites were fabricated via solution blending. The influence of PBAT and Al2O3 content on the thermal stability, flexural properties, impact strength, and morphology of both the PLA/PBAT blends and the PLA/PBAT/Al2O3 nanocomposites were investigated. The impact strength of the PLA/PBAT/Al2O3 nanocomposites containing 5 wt% PBAT increased from 4.3 to 5.2 kJ/m2 when the Al2O3 content increased from 0 to 1 wt%. This represents a 62% increase compared to the impact strength of pristine PLA and a 20% increase compared to the impact strength of PLA/PBAT blends containing 5 wt% PBAT. Scanning electron microscopy imaging revealed that the Al2O3 nanoparticles in the PLA/PBAT/Al2O3 nanocomposites function as a compatibilizer to improve the interfacial interaction between the PBAT and the PLA matrix.  相似文献   

4.
In this research work, biocomposites based on a ternary system containing softwood Kraft lignin (Indulin AT), poly‐L ‐lactic acid (PLLA) and polyethylene glycol (PEG) have been developed. Two binary systems based on PLLA/PEG and PLLA/lignin have also been studied to understand the role of plasticizer (i.e., PEG) and filler (i.e., lignin) on the overall physicomechanical behavior of PLLA. All samples have been prepared by melt‐blending. A novel approach has also been introduced to improve the compatibility between PLLA and PEG by using a transesterification catalyst under reactive‐mixing conditions. In PEG plasticized PLLA flexibility increases with increasing content of PEG and no significant effect of the molecular weight of PEG on the flexibility of PLLA has been observed. Differential scanning calorimetry and size‐exclusion chromatography along with FTIR analysis show the formation of PLLA‐b‐PEG copolymer for high temperature processed PLLA/PEG systems. On the other hand, binary systems containing lignin show higher stiffness than PLLA/PEG system and good adhesion between the particles and the matrix has been observed by scanning electron microscopy. However, a concomitant good balance in stiffness introduced by the lignin particles and flexibility introduced by PEG has been observed in the ternary systems. This study also showed that high temperature reactive melt‐blending of PLLA/PEG leads to the formation of a segmented PLLA‐b‐PEG block copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Poly(l ‐lactic acid) (PLLA) composite membranes were fabricated by nonsolvent induced phase separation method using polyaniline (PANI) as an additive. Membrane structure was characterized by attenuated total reflectance Fourier transform‐infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, porosity, and pore size analysis. Membrane performance was assessed by goniometer, pure water flux, molecular weight cut‐off, static adsorption and dynamic filtration. The incorporation of PANI significantly improved the hydrophilicity and permeability of PLLA composite membrane, and eventually enhanced the antifouling performance of composite membrane compared with pure PLLA membrane. It was demonstrated that PLLA composite membrane with 1 wt % PANI had better separation and antifouling performance compared with other composite membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44452.  相似文献   

6.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was blended with poly(lactic acid) (PLA) with various reactive processing agents to decrease its brittleness and enhance its processability. Three diisocyanates, namely, hexamethylene diisocyanate, poly(hexamethylene diisocyanate), and 1,4‐phenylene diisocyanate, were used as compatibilizing agents. The morphology, thermomechanical properties, and rheological behavior were investigated with scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, tensile testing, dynamomechanical thermal analysis in torsion mode (dynamic mechanical analysis), and oscillatory rheometry with a parallel‐plate setup. The presence of the diisocyanates resulted in an enhanced polymer blend compatibility; this led to an improvement in the overall mechanical performance but did not affect the thermal stability of the system. A slight reduction in the PHBV crystallinity was observed with the incorporation of the diisocyanates. The addition of diisocyanates to the PHBV–PLA blend resulted in a notable increase in the final complex viscosity at low frequencies when compared with the same system without compatibilizers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44806.  相似文献   

7.
This study examines the isothermal treatment of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) powders and films. The PHB and PHBV crystallinities were determined using X‐ray diffractometry, and shown to increase with temperature (130–150°C) and then decreased from 55% to 45% at 180°C. The crystal morphology of crystal planes (101) and (111) became sharp at a high temperature. The weight average molecular weight (Mw) of PHB decreased from 1,028,000 to 41,800 g/mol when heated at 180°C for 30 min. The molecular weight of PHB decreased more rapidly than that of PHBV with time. No peak signal was observed in gel permeation chromatography after heating at 150°C because the solubility of PHB changed with crystallinity. The thermal behaviors of PHB and PHBV were analyzed by differential scanning calorimetry and thermogravimetric analysis. The roughness, contact angle, and surface morphology of PHB and PHBV films were also measured to determine the surface properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3659–3667, 2013  相似文献   

8.
The demand for biobased barrier packaging alternatives is constantly growing. Poly(lactic acid) (PLA)‐based polymers are one of the most extensively studied biomass‐derived synthetic polymers; however, they typically lack water‐barrier properties. We synthesized a copolymer of d ,l ‐lactic acid, 1,4‐butanediol, and itaconic acid [poly(d ,l ‐lactic acid–1,4‐butanediol–itaconic acid) (PLABDIA)] via bulk polycondensation. The radical crosslinking reactions of the synthesized polymer were investigated with bulk crosslinking trials to find a formulation that was suitable for a rapidly crosslinkable barrier coating. The crosslinking efficiency was tested with methacrylate and acrylate crosslinkers together with peroxide radical initiators. Poly(ethylene glycol) diacrylate (number‐average molecular weight = 250 g/mol) together with dilauroyl peroxide proved to be the best crosslinker–initiator combination. An aqueous dispersion of PLABDIA was prepared with a thermomechanical method and applied to commercial boxboard on a pilot‐scale line coater. With a coating weight of 10 g/m2, a water vapor transmission rate of 22.8 g/m2d was achieved, and this coating outperformed commercial extruded PLA coatings. The samples also showed very good grease resistance and would, therefore, be a good solution for the packaging of dry and fatty goods. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44326.  相似文献   

9.
This article reports on the development of biocomposites based on polylactic acid (PLA) and borassus powder. Borassus powder was treated with alkali to remove hemicelluloses and lignin. The treated borassus improved the homogeneous mixing with PLA and increased the crystallinity of PLA. Dispersibility of the borassus was studied by scanning electron microscopy (SEM) and X-ray MicroCT. PLA/borassus composites were prepared by melt mixing of PLA with 5, 10, and 15 wt % treated/untreated borassus. Composites were examined for mechanical properties and crystallization. Composites showed enhanced tensile strength compared to neat PLA. The PLA/treated borassus powder composites displayed higher crystallinity than PLA. The isothermal cold crystallization study showed increase in the crystallization rate of PLA in the presence of treated borassus. The spherulitic growth was studied using polarized optical microscopy. The enhanced performance of the PLA-borassus composites was observed in the presence of borassus. This study demonstrates that the PLA-borassus composites show great promise for bioplastics applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47440.  相似文献   

10.
The effect of the mixing condition in a mill‐type mixer on the thermal property and the crystal formation of the poly(l ‐lactide)/poly(d ‐lactide) blends is investigated. The blends melt‐mixed at 200 and 210 °C under application of a high shear flow tend to show a single melting peak of the stereocomplex crystal (SC) in the differential scanning calorimetry first and second heating processes without indicating the trace of the melting of homo‐chiral crystal. The mixing at an elevated temperature causes a serious thermal degradation. Further kneading of the blends at an elevated temperature higher than Tm of SC causes the transesterification between the same enatiomeric chains forming block copolymers of l ‐ and d ‐chains. This block copolymer acts as a nucleating agent of SC and the compatibilizing agent between poly(l ‐lactide) and poly(d ‐lactide) and promotes the formation of SC. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45489.  相似文献   

11.
Environmental issues concerning petroleum‐based polymers have begun a growing emphasis to utilize sustainable poly(lactic acid) (PLA) based packaging. However, PLA has its own limitations such as brittleness, high gas permeabilities and slow crystallization rate. With the aim to alleviate these limitations, we made a maiden effort to use a food additive, sucrose palmitate (SP) as eco‐friendly filler for fabrication of PLA based bionanocomposites. FTIR analysis elucidated the presence of hydrogen bonding and intermolecular interaction between PLA and reinforcement. Ordered orientation of the SP in the PLA matrix visualized by TEM analysis revealed uniform dispersion of SP filler into PLA matrix. DSC and XRD results confirmed that the incorporated bio‐filler acted as a nucleating agent and thus partially contributed towards the crystallinity of PLA‐SP bionanocomposites. Enhancement in the tensile strength and elongation at break up to 83 and 56% respectively is obtained. The best positive influence for the oxygen barrier was confirmed for the PLA‐SP bionanocomposite film where the reduction in oxygen permeability by 69% is achieved in comparison to pure PLA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41320.  相似文献   

12.
Supramolecular poly(?‐capolactone)/poly(lactide) alternating multiblock copolymers were prepared by UPy‐functionalized poly(lactide)‐b‐ poly(?‐capolactone)‐b‐ poly(lactide) copolymers. The prepared supramolecular polymers (SMPs) exhibit the characteristic properties of thermoplastic elastomers. The stereo multiblock SMPs (sc‐SMPs) were formed by blending UPy‐functionalized poly(l ‐lactide)‐b‐ PCL‐b‐ poly(l ‐lactide) (l ‐SMPs) and UPy‐functionalized poly(d ‐lactide)‐b‐ PCL‐b‐ poly(d ‐lactide) (d ‐SMPs) due to stereocomplexation of the PLLA and PDLA blocks. Sc‐SMPs with low content of d ‐SMPs (≤20%) are transparent, elastic solids, while those having high d ‐SMPs content are opaque, brittle solids. The effects of l ‐SMPs/d ‐SMPs mixing ratios on thermal, crystallization behaviors, crystal structure, mechanical and hydrophilic properties of sc‐SMPs were deeply investigated. The incorporation of UPy groups depresses the crystallization of polymer, and the stereocomplex formation accelerates the crystallization rate. The used initiator functionalized polyhedral oligomeric silsesquioxanes causes a different effect on the crystallization of PLA and PCL blocks. The tensile strength and elongation at break of l d /d d ‐SMPs (d represents the initiator diethylene glycol) are significantly larger than that of l p /d p ‐SMPs (p represents the initiator polyhedral oligomeric silsesquioxanes), and their heat resistance and hydrophilicity can be also modulated by the l ‐SMPs/d ‐SMPs mixing ratios and the different initiators. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45575.  相似文献   

13.
A novel processing technique, i.e. high‐pressure compression molding/salt leaching, was developed to fabricate ultraporous poly(lactic acid) (PLA) scaffolds. The optimized composition was studied in relation to the porosity, pore morphology, thermal property, and mechanical performance of the PLA scaffolds. At a porogen (CaCO3) content of 90 wt %, the scaffolds have an interconnected open pore structure and a porosity above 80%. It was truly interesting that the structural stability of high‐pressure molded scaffolds was remarkably improved based on the fact that its glass transition temperature (83.5°C) increased about 20°C, as compared to that of the conventional compression‐molded PLA (60°C), which is not far from physiological temperature (~37°C) at the risk of structural relaxation or physical aging. More importantly, the mechanical performance of PLA scaffolds was drastically enhanced under optimized processing conditions. At pressure and temperature of 1000 MPa and 190°C, the porous PLA scaffolds attained a storage modulus of 283.7 MPa, comparable to the high‐end value of trabecular bone (250 MPa) ever reported. In addition, our prepared PLA scaffolds showed excellent cellular compatibility and biocompatibility in vitro tests, further suggesting that the high‐pressure molded PLA scaffolds have high potential for bone tissue engineering applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3509–3520, 2013  相似文献   

14.
This study examined the effect of storage time at room temperature on the melt viscosity, thermal, and tensile properties of epoxidized soybean oil plasticized poly(lactic acid) (PLA) films manufactured through a cast extrusion process. Infrared results indicate that plasticizer migration to the surface of the film occurred after only 30 days of storage, which significantly affected the performance of plasticized films. While the melt viscosity, glass transition temperature, degree of crystallinity, tensile strength, and modulus increased, the elongation at break and energy to break decreased with storage time up to 30 days and all properties remained constant thereafter. However, the ability of stored plasticized film to cold crystallize remained unaffected since both the cold crystallization temperature and melting temperature were not affected during storage. Although plasticized film lost some flexibility after only 30 days of storage due to plasticizer migration to the surface of the film, sufficient plasticization performance still remained in plasticized PLA films for flexible packaging application even after a long storage period at ambient conditions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43201.  相似文献   

15.
Composites were investigated regarding the comparison of multi‐walled carbon nanotubes (MWCNTs) with exfoliated graphene(EG) in poly(L‐lactic acid) (PLLA) and the effect of silane‐treated carbon nanofillers on properties of PLLA composites. Solution blending method was used to prepare PLLA composites at a filler content of 0.5 wt %. Fourier transform infrared spectroscopy and X‐ray photoelectron spectra results indicated the attachment of silane molecules on the surface of these nanofillers. It was found that the addition of these nanofillers greatly enhanced the mechanical, thermomechanical, and crystallization behaviors of PLLA due to the heterogeneous nucleation effect. Moreover, the silane‐treated fillers further enhanced the breaking elongation moderately (although the materials are still brittle), modulus and thermal property of the nanocomposites, without sacrificing the tensile strength, compared with the pristine nanocomposites. On the other hand, composites reinforced with MWCNTs and EG perform almost the same mechanical property. And EG outperformed MWCNTs in thermomechanical properties of composites when being used as the reinforcement of PLLA. Conversely, composites reinforced with MWCNTs showed better crystallization properties than those reinforced with EG. Interestingly, no significant changes were observed for the crystallization properties of PLLA composites when MWCNTs and EG had been treated by silane coupling agent. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1194‐1202, 2013  相似文献   

16.
The most promising representative of biodegradable plastics in packaging applications is polylactide (PLA). Despite this, there is only a small market of PLA in Europe. Reasons for that are the high price of PLA raw material and the lack of knowledge of the behavior in packaging applications. It has a number of peculiarities so producers of plastics packaging hesitate to use it. Like other polyesters, it can degrade at increased temperatures in the presence of moisture by hydrolysis whereby it loses its physical and chemical properties. In all production processes, production waste is generated (i.e., stamping grids or edge trim). In most cases, this waste is used. It is not known in detail, how an internal recycling process will influence the final product properties. One problem is hydrolysis by which the production waste is partially degraded. Target of this study is to analyze the recycling process of PLA within the context of necessary process adaptions and the effects upon ecological efficiency. Films for packaging containing multiple types and amounts of production waste will be produced by extrusion and tested concerning their mechanical properties. The analysis of the recycling behavior showed that internal PLA production waste is well suitable for recycling. The influence of the recycling on the molecular weight is negligible. The effect on the viscosity and thus on the extrusion process is higher. Packaging relevant properties like mechanical or optical properties are hardly influenced. Especially recycling with a recycling quota of up to 50% has an insignificant effect on the film properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41532.  相似文献   

17.
The effects of the crystallization temperature, Tc, on the crystal structure as well as its thermal behavior of plasticized poly(l ‐lactic acid) were investigated by means of wide‐angle X‐ray diffraction (WAXD), Fourier‐transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). PLLA blended with succinic acid‐bis[2‐[2‐(2‐methoxyethoxy)ethoxy]ethyl] ester (SAE) showed clear difference in Tc dependence of crystalline form compared to PLLA homopolymer. PLLA with 26 wt % SAE crystallized into orthorhombic α form for Tc above 80°C, while a peculiar disordered structure (mesophase) was obtained for Tc at 40°C. A detailed FTIR analysis of the mesophase of PLLA, focusing on the intra‐ and inter‐chain interaction in the structure, indicated that mesophase had a large degree of disorder in 10/3 helical conformation as well as its packing manner of disordered 10/3 helical chain. Upon heating, mesophase showed a steep exothermic peak at 80°C in DSC thermogram, indicating the phase transformation from mesophase to a form crystal. FTIR results showed that the degree of interchain interaction of C=O in PLLA started to decrease above 60°C, followed by steep increase at 80°C due to the recrystallization into a form. Melt‐recrystallization process in mesophase‐α transformation was clarified. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39762.  相似文献   

18.
Isothermal and non‐isothermal crystallization kinetics of poly(l ‐lactic acid)/poly(butylene terephthalate) (PLLA/PBT) blends containing PLLA as major component is detailed in this contribution. PLLA and PBT are not miscible, but compatibility of the polymer pair is ensured by interactions between the functional groups of the two polyesters, established upon melt mixing. Crystal polymorphism of the two polyesters is not influenced by blending, as probed by wide‐angle X‐ray analysis. The addition of PLLA does not affect the temperature range of crystallization kinetics of PBT, nor the crystallinity level attained when the blends are cooled from the melt at constant rate. Conversely, PBT favors crystallization of the biodegradable polyester. The addition of PBT results in an anticipated onset of crystallization of PLLA during cooling at a fixed rate, with a sizeable enhancement of the crystal fraction. Isothermal crystallization analysis confirmed the faster crystallization rate of PLLA in the presence of PBT. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40372.  相似文献   

19.
A mixture design of experiment and subsequent regression analysis was used to study the effects of two additives on blends of poly(lactic acid) (PLA) and acrylonitrile butadiene styrene (ABS). Statistical analysis was used to find a blend with a balance of high toughness, strength, and stiffness. The blends were prepared by lab scale reactive extrusion and injection molding. Least‐square regression models of statistically significant effects were built by analysis of variance (ANOVA). Using these models, optimization studies were used to study the predicted maximum values of each measurement criteria. Very large increases were seen in the measured responses with relatively small changes in additive content. Compared to the neat blend without additives, the impact strength was increased by over 600%, the elongation at break was increased by over 1000%, the tensile strength increased by 11%, and the tensile modulus increased by over 7%. Surprisingly, the composite optimization, which included all measured criteria, occurred at a point that allowed all four criteria values to remain very close to their individual maximums. The result is a partially biobased blend that does not sacrifice strength or stiffness to achieve very high toughness. © 2016 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44516.  相似文献   

20.
“Linear” aliphatic polyesters composed of two poly(l ‐lactide) arms attached to 1,3‐propanediol and “star‐shaped” ones composed of four poly(l ‐lactide) arms attached to pentaerythritol (2‐L and 4‐L polymers, respectively) with number‐average molecular weight (Mn) = 1.4–8.4 × 104g/mol were hydrolytically degraded at 37°C and pH = 7.4. The effects of the branching architecture and crystallinity on the hydrolytic degradation and crystalline morphology change were investigated. The degradation mechanism of initially amorphous and crystallized 2‐L polymers changed from bulk degradation to surface degradation with decreasing initial Mn; in contrast, initially crystallized higher molecular weight 4‐L polymer degraded via bulk degradation, while the degradation mechanism of other 4‐L polymers could not be determined. The hydrolytic‐degradation rates monitored by molecular‐weight decreases decreased significantly with increasing branch architecture and/or higher number of hydroxyl groups per unit mass. The hydrolytic degradation rate determined from the molecular weight decrease was higher for initially crystallized samples than for initially amorphous samples; however, that of 2‐L polymers monitored by weight loss was larger for initially amorphous samples than for initially crystallized samples. Initially amorphous 2‐L polymers with an Mn below 3.5 × 104g/mol crystallized during hydrolytic degradation. In contrast, the branching architecture disturbed crystallization of initially amorphous 4‐L polymers during hydrolytic degradation. All initially crystallized 2‐L and 4‐L polymers had δ‐form crystallites before hydrolytic degradation, which did not change during hydrolytic degradation. During hydrolytic degradation, the glass transition temperatures of initially amorphous and crystallized 2‐L and 4‐L polymers and the cold crystallization temperatures of initially amorphous 2‐L and 4‐L polymers showed similar changes to those reported for 1‐armed poly(l ‐lactide). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41983.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号