首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the fatty acids and other lipophilic components in extracts from black currant seed and pomace (containing seed) were investigated, with a view to highlighting any potential uses. The same non‐hydroxylated fatty acids were the major components in both types of extract, but total levels were less in pomace (75 582 mg 100 g?1 oil) than in seed alone (90 972 mg 100 g?1 oil) and there were less unsaturated fatty acids, including GLA (8653 and 12 625 mg 100 g?1 oil, respectively), but long chain n‐20:0 – n‐30:0 fatty acids (4080 and 437 mg 100 g?1 oil, respectively) were greatly increased in pomace. Phytosterols (mainly β‐sitosterol), saturated n‐20:0 – n‐30:0 policosanols, ω‐hydroxy fatty acids (mainly 16‐hydroxy 16:0) and 2‐hydroxy fatty acids (mainly 2‐hydroxy 24:0) were present at much greater levels in pomace (2496, 2097, 958 and 46 mg 100 g?1 oil, respectively) than in seed (553, 108, 161, and 1 mg 100 g?1 oil, respectively). The pomace extract is a useful source of fatty acids, phytosterols and policosanols with potential functional properties. Practical applications: The study investigated the lipophilic components in isohexane extracts from black currant seed and pomace (containing seed). Only pomace extracts had substantial amounts of phytosterols and policosanols that have potential as cholesterol‐lowering agents, whereas fatty acids such as GLA, that has anti‐inflammatory properties, are mainly in the seed.  相似文献   

2.
Seeds from 12 Acacia cyanophylla ecotypes, harvested in Tunisia, were examined for their seed oil contents of carotenoids, tocopherols and phytosterols. The average carotenoid content (lutein and zeaxanthin) was ca. 102 mg kg?1 of total extracted lipids. Lutein (ca. 97 mg kg?1 of total extracted lipids) was usually more abundant than zeaxanthin (ca. 5 mg kg?1 of total extracted lipids). The mean total tocopherol content was ca. 704 mg kg?1 of total extracted lipids. The main isomer was α‐tocopherol, with more than 75 % of total tocopherols (ca. 528 mg kg?1 of total extracted lipids), followed by γ‐tocopherol (ca. 168 mg kg?1 of total extracted lipids) and δ‐tocopherol (ca. 86 mg kg?1 of total lipids). High levels of phytosterols (ca. 7.8 g kg?1 of total extracted lipids) were detected, among which β‐sitosterol was the most abundant (47 %). All these results highlight the richness of carotenoids, tocopherols and sterols in A. cyanophylla seed oil, and imply that this species might constitute a potential resource for the development of functional foods.  相似文献   

3.
In this study, the aim was to characterize the physicochemical properties and some bioactive compounds of expeller-pressed oils of five registered poppy seed varieties (TMO–1, Ofis–8, Ofis–96, Ofis–95, Ofis–3) grown in Turkey. The amounts of total carotenoids, chlorophylls, phenols, and antioxidant activities of oils ranged between 0.08–0.24 mg 100 g−1, 0.03–9.04 mg pheophytin a kg−1, 3.41–8.57 mg gallic acid equivalent 100 g−1, and 5.60–7.33 mM Trolox equivalent 100 g−1, respectively. The most abundant fatty acid in poppy seed oils was linoleic acid (69.85–74.02%), followed by oleic acid (13.98–16.99%), and palmitic acid (8.51–9.75%). In addition, poppy seed oils were rich in β–sitosterol (133.47–153.42 mg 100 g−1), campesterol (45.36–58.60 mg 100 g−1), and δ–5–avenasterol (28.21–39.40 mg 100 g−1). High amounts of γ–tocopherol and α–tocopherol were detected. This research is the first study, which identified and quantified the polyphenol, β–carotene, and lutein compounds of expeller–pressed poppy seed oils by HPLC. Tyrosol, apigenin, syringic acid, 3–hydroxytyrosol, luteolin, p–coumaric acid, quercetin, ferulic acid, sinapic acid, and veratric acid were detected in expeller-pressed poppy seed oils.  相似文献   

4.
Coconut oil is rich in medium chain triglycerides but lacks polyunsaturated fatty acids (PUFA) and bio‐active phytoceuticals. In the present work nutra‐coconut oil was prepared by blending coconut oil and flaxseed oil (70:30) and adding 3000 ppm of flaxseed cake concentrate using ethanol, methanol and 20 % aqueous ethanol. The concentrate prepared from flaxseed was from ethanol as it gave maximum yield. The different bio‐active molecules in flaxseed concentrate observed are polyphenols (39.04 %), tocopherols (4.37 %), ferulic acid (0.17 mg g?1), p‐coumaric acid (2.24 mg g?1), chlorogenic acid (16.11 mg g?1), gallic acid (8.58 mg g?1), sinapic acid (0.64 mg g?1) and secoisolariresinol (30.13 mg g?1). The nutra‐coconut oil was found to have polyphenols (2.86 %), tocopherols (442.96 ppm) and antiradical activity (94 %). The PUFA content was found to increase in nutra‐coconut oil significantly (p < 0.05) (2–22 %). The FT‐IR spectra of nutra‐coconut oil revealed that the peak at 3009 and 1651 cm?1 was associated with the presence of unsaturated fatty acids. There was no significant (p > 0.05) difference observed in sensory attributes of snack food fried using coconut oil and nutra‐coconut oil indicating that the later could be used as a frying medium and useful for food processing industries.  相似文献   

5.
The oil contents of seeds from paprika (Capsicum annuum L.) collected from different locations in Turkey and Italy varied in a relatively wide range from 8.5 g/100 g to 32.6 g/100 g. The fatty acid, tocopherol and sterol contents of the oils from different paprika seeds were investigated. The main fatty acids in paprika seed oils were linoleic acid (69.5–74.7 g/100 g), oleic acid (8.9–12.5 g/100 g) and palmitic acid (10.7–14.2 g/100 g). The oils contained an appreciable amount of γ‐tocopherol (306.6–602.6 mg/kg), followed by α‐tocopherol (7.3–148.7 mg/kg). The major sterols were β‐sitosterol (1571.4–4061.7 mg/kg), campesterol (490.8–1182.7 mg/kg), and Δ5‐avenasterol (374.5–899.6 mg/kg). The total concentration of sterols ranged from 3134.0 mg/kg to 7233.7 mg/kg. Remarkable amounts of cholesterol were found in the different samples (164.6–491.0 mg/kg). The present study showed that paprika seeds are a potential source of valuable oil that could be used for edible and industrial applications.  相似文献   

6.
The changes in the quality of crude corn oil caused by moisture and two different thermal pretreatments (oven heating and steam heating) of wet‐milled corn germ were evaluated and compared with those of untreated oil. Increasing the moisture content of the corn germ from 8 to 25% before oil extraction increased the acid value (AV) (3.02–4.01 mg KOH g?1), peroxide value (PV) (0.52–1.05 meq kg?1), and the red value (7.3–8.7) and decreased the content of total tocopherols by 37% and that of γ‐tocopherols by 31%. Oven heating tended to decrease the AV and PV while steam heating significantly increased the total and individual tocopherol contents (P < 0.05). The different moisture contents and thermal pretreatments of corn germ caused no significant differences in the fatty acid composition and the contents of total and individual phytosterols of the crude oils. The γ‐tocopherol contents were found to be highly correlated with the red values (the corresponding R2 reached 0.9977 and 0.9089 for moisture and heat pretreatments, respectively).  相似文献   

7.
Various components of Phoenix tree (Firmiana simplex) seed were determined. Oil, protein, moisture, ash, and fiber accounted for 27.8 ± 0.3, 19.7 ± 0.4, 7.5 ± 0.2, 4.4 ± 0.3, and 31.23 ± 0.93 % (w/w) of the seed, respectively. The acid value, peroxide value, saponification value, and unsaponifiable matter content of Phoenix tree seed oil extracted using the Soxhlet method were 3.73 ± 0.02 mg KOH/g, 1.97 ± 0.21 mmol/kg, 183.74 ± 2.37 mg KOH/g, and 0.90 ± 0.05 g/100 g, respectively. The total tocopherol content was 54.5 ± 0.5 mg/100 g oil, which consisted mainly of δ‐tocopherol (29.5 ± 0.6 mg/100 g oil) and γ‐tocopherol (13.8 ± 0.8 mg/100 g oil). Linoleic acid (L, 30.2 %), oleic acid (O, 22.2 %), and sterculic acid (S, 23.2 %) were the main unsaturated fatty acids of Phoenix tree seed oil. The saturated fatty acids included palmitic acid (17.4 %) and stearic acid (St, 2.9 %). The work shows the first report of sterculic acid in seeds of this species. This oil can be used as a raw material to produce sterculic acid.  相似文献   

8.
In the present study, mulberry seed oil (MSO) samples obtained from seeds of different mulberry varieties as well as concentrated mulberry juice production waste (mulberry pomace) were investigated. Radical scavenging capacity, tocopherol and total phenolic content of MSO were determined. It was observed that MSO contain unique amounts of δ‐tocopherol varying between 1645–2587 mg kg?1 oil depending on the variety. The secondary tocopherol homologue was γ‐tocopherol within a concentration range of 299–854 mg kg?1 oil. MSO exhibited a very high antioxidant capacity varying in the range of 1013–1743 and 2574–4522 mg α‐tocopherol equivalents (α‐TE) per kg of oil for 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and freeze‐dried 2,2′‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) (FD‐ABTS) radical cation assays, respectively. Both antioxidant capacity and total phenolic content were higher for mulberry pomace oil compared with the seed oils. Fatty acid composition of MSO was also determined, and linoleic acid was found to be the primary fatty acid (66–80 %).  相似文献   

9.
In view of the growing demand for vegetable oil, currently exploration of some non‐conventional oils is of great concern. This study firstly analyzed the contents of fatty acids, phytosterols, and tocopherols in Catalpa ovata seed oil collected from four different Provinces in China. Then the composition of flavonoids as well as their antioxidant activities in defatted seed meal was determined. The results showed that the relative oil content in C. ovata seeds ranged from 24.0 to 36.0 % and seed oil was mainly composed of fatty acids linoleic acid (43.4–50.1 %), α‐linolenic acid (23.8–24.4 %), and oleic acid (13.1–16.2 %). The content of unsaturated fatty acids was up to 85.0 %. Sterol in seed oil mainly contained campesterol, stigmasterol, and β‐sitosterol. β‐sitosterol accounted for 74.0 % of the total sterol. The tocopherol content was 173.0–225.7 mg/100 g. Defatted seed meal from Hubei Province showed the highest content of total flavonoids (11 mg/g) and the strongest activities for DPPH radicals scavenging, ABTS radicals scavenging, and ferric reducing antioxidant power compared with other defatted seed meal in this study. Seven flavonoids were identified from C. ovata seed meal. These results suggest that C. ovata seeds may be developed as a new source of oil and can also be properly used in pharmaceuticals and cosmetics.  相似文献   

10.
Acer truncatum seed oil rich in nervonic acid was extracted using supercritical carbon dioxide. GC (Gas Chromatography) analysis revealed that the oil contained approximately 6.22% nervonic acid. The sn‐2 compositions were also determined using lipase hydrolysis. A total of 52 triacylglycerides (TAG) were tentatively identified in the oil using an ultra‐performance convergence chromatography (UPC2) coupled with quadrupole time‐of‐flight mass spectrometry (Q‐TOF‐MS) for the first time. In addition, the contents of phytosterols (1961.9–2402.8 μmol/kg) and β‐carotene (2.09–2.35 μmol/kg) were also quantified for the first time, along with tocopherols (2352.0–2654.3 μmol/kg). The γ‐tocopherol (1296.9‐1442.3 μmol/kg) was the primary tocopherol, while β‐sitosterol (1355.2–1631.3 μmol/kg) was the dominant phytosterol. The physicochemical properties of the oil were also investigated. This study indicated that A. truncatum seed oil is rich in nervonic acid and other nutraceutical constituents. It has a high potential in functional foods for improving human health.  相似文献   

11.
Two modified carotenoids, β‐6‐hydroxy‐2, 5, 7, 8‐tetramethyl‐chromane carboxylic acid β‐apo‐8'‐carotenoate (Caro‐Trolox) and 3, 5‐di‐tert‐butyl‐4‐hydroxy benzoic acid β‐apo‐8'‐carotenoate (Caro‐BHT) were synthesized by esterification of β‐apo‐8'‐carotenol with Trolox and with 3, 5‐di‐tert‐butyl‐4‐hydroxy benzoic acid, respectively. Their activity under light exposure was examined comparatively to that of Trolox, α‐tocopherol, β‐carotene, β‐apo‐8'‐carotenoic acid (CA} and ethyl β‐apo‐8'‐carotenoate. The substrate used was purified sunflower oil. In the absence of a photosensitizer (240 W/m2 , 25 °C) Caro‐Trolox (200 mg/kg) behaved as an antioxidant and was quite stable (1/5 of the initial amount remained after 2‐wk storage). Caro‐BHT (200 mg/kg) showed no antioxidant activity and was quite unstable (it was destroyed within 7 d). In the presence of 5 mg/kg chlorophyll α (12000 lx, 25 °C) similar observations were made. The activity of Caro‐Trolox was concentration‐dependent. At a 100‐mg/kg level of addition its activity was similar to that of the mixture of α‐t_copherol (100 mg/kg) and β‐carotene (10 mg/kg). Its performance at the 10‐mg/kg level was slightly better than that of the other carotenoids. The antioxidant behavior of the modified carotenoids was attributed to the presence of the phenolic moiety as supported by the results of the 1, 1‐diphenyl‐2‐picrylhydrazyl test (e.g. EC50 after 15 min: 26.2, Caro‐Trolox; 35.8, Caro‐BHT; 122, CA; 22.3, Trolox).  相似文献   

12.
Roman nettle (Urtica pilulifera L.) is an annual plant whose seeds are rich in oil and valuable phytochemicals. In this study, oil from Roman nettle seeds is extracted by cold pressing and its quality is evaluated during storage at room temperature for up to 90 days. The seed moisture content is adjusted to 0%, 2.5%, 5%, 7.5%, and 10% (g 100 g−1) to evaluate its effect on oil extraction yield. The highest oil yield (31.5%) is found in the seeds containing 5% moisture. Acid and peroxide values increase with both moisture content increase and during storage. Moreover, an increase in seed moisture content decreases the oxidative stability (from 8.1 to 6.3 h), carotenoids (from 25 to 14 mg kg−1), chlorophylls (from 742 to 486 mg kg−1), and phenolic contents (from 134 to 97 (mg caffeic acid per kg oil)) of the extracted oils. Fatty acid profile and phytosterols are not significantly influenced (p > 0.05) by the moisture content of the seeds and storage. Total phenol contents and γ-tocopherol levels increase during storage, but carotenoids, chlorophylls, and α-tocopherol levels decrease. Based on overall composition and quality parameters, Roman nettle seed oil may have potential food applications.  相似文献   

13.
Increasing population has resulted in overexploitation of conventional seeds. The limited supply of water and salinization of agricultural lands are threats to crop production. This creates food insecurity and results in ever‐increasing prices of crops and edible oils. Halophytes that produce high‐quality seeds can serve as sources of oil and edible products. We analyzed the chemical composition and antioxidant activity of seeds from 5 halophytic grasses, i.e., Aeluropus lagopoides, Eragrostis ciliaris, Eragrostis pilosa, Panicum antidotale, and Sporobolus ioclados. These seeds contained crude protein (10–29%), carbohydrates (32–55%), crude fiber (4–21%), minerals (3.8–9.2%), and oil (4–11%), indicating their nutritional potential. Oils of these seeds had suitable fatty‐acid composition with 62–82% unsaturation and only 17–24% saturation. Out of this, 91–94% of the total oil constituted by linoleic, oleic, and palmitic acids. High contents of total phenols (2.8–4.2 mg gallic acid equivalent [GAE] g?1), flavonoids (0.5–1.3 mg Quercetin equivalent [QE] g?1), and tannins (0.3–1.3 mg catechin equivalent [CE] g?1) supported their high antioxidant activity (1,1‐Diphenyl‐2‐picryl‐hydrazyl (DPPH) activity in terms of half maximal inhibitory concentration‐IC50 1.1–5.86 mg mL?1; 2,2′‐azino‐bis3‐ethylbenzothiazoline‐6‐sulphonic acid (ABTS) 18.8–72.8 mmol Trolox g?1; ferric‐reducing antioxidant power 2.0–4.4 mmol Fe+2 g?1). The reverse phase‐high‐pressure liquid chromatography analysis identified the presence of bioactive phenolic antioxidants (mainly gallic acid, chlorogenic acid, coumaric acid, ferulic acid, kaempferol, and quercetin). Due to these characteristic composition and salt tolerability, these plants can serve as potential sources of industrial raw materials for food, edible oil, phytochemicals, and oliochemicals.  相似文献   

14.
BACKGROUND: The objective of this work is to develop an efficient pretreatment method that can help enzymes break down the complex carbohydrates present in wheat straw to sugars, and to then ferment of all these sugars to ethanol. RESULTS: The yield of sugars from wheat straw (8.6%, w/v) by lime pretreatment (100 mg g?1 straw, 121 °C, 1 h) and enzymatic hydrolysis (45 °C, pH 5.0, 120 h) using a cocktail of three commercial enzyme preparations (cellulase, β‐glucosidase, and xylanase) at the dose level of 0.15 mL of each enzyme preparation g?1 straw was 568 ± 13 mg g?1 (82% yield). The concentration of ethanol from lime pretreated enzyme saccharified wheat straw (78 g) hydrolyzate by recombinant Escherichia coli strain FBR5 at pH 6.5 and 35 °C in 24 h was 22.5 ± 0.6 g L?1 with a yield of 0.50 g g?1 available sugars (0.29 g g?1 straw). The ethanol concentration was 20.6 ± 0.4 g L?1 with a yield of 0.26 g g?1 straw in the case of simultaneous saccharification and fermentation by the E. coli strain at pH 6.0 and 35 °C in 72 h. CONCLUSION: The results are important in choosing a suitable pretreatment option for developing bioprocess technologies for conversion of wheat straw to fuel ethanol. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
A detailed kinetic study was performed for the reaction of the aroxyl radical (ArO?) with eight vegetable oils 1–8, which contain different concentrations of α‐, β‐, γ‐, and δ‐tocopherols and ‐tocotrienols (‐Tocs and ‐Toc‐3s). The second‐order rate constants (ks) and aroxyl radical absorption capacity (ARAC) values for the reaction of ArO? with vegetable oils 1–8 (rice bran 1, perilla 2, rapeseed 3, safflower 4, grape seed 5, sesame 6, extra virgin olive 7, and olive oils 8) were measured in ethanol/chloroform/D2O (50:50:1, v/v/v) solution at 25 °C using stopped‐flow spectrophotometry. The ks value (16.1 × 10?3 L g?1 s?1) of rice bran oil 1 with the highest activity was 8.0 times larger than that (2.02 × 10?3) of olive oil 8 with the lowest activity. The concentrations (in mg 100 g?1) of α‐, β‐, γ‐, and δ‐Tocs and ‐Toc‐3s contained in the vegetable oils 1–8 were determined using high performance liquid chromatography‐mass spectrometry/mass spectrometry (HPLC‐MS/MS). From these results, it was clarified that the ArO?‐scavenging rates (ks) (i.e., the relative ARAC value) obtained for the vegetable oils 1–8 may be well explained as the sum of the product of the rate constant () and the concentration ([AOH‐i]/105) of AOH‐i (Tocs and Toc‐3s) included in vegetable oils. The results suggest that the ARAC assay method might be used in the evaluation of antioxidant activity of general food extracts.  相似文献   

16.
Seeds from 22 accessions of the yam bean species Pachyrhizus ahipa (14 accessions), P. erosus (5), and P. tuberosus (3) were investigated for oil and protein contents, fatty acid composition of the seed oil, and the total tocopherol content and composition. Plants from the accessions were grown under greenhouse conditions during one (P. erosus and P. tuberosus) or two years (P. ahipa). The pattern of the investigated seed quality traits was very similar in the three species. Yam bean seeds were characterized by high oil (from about 20 to 28% in one environment) and protein contents (from about 23 to 34%). Seed oil contained high concentrations of palmitic (from about 25 to 30% of the total fatty acids), oleic (21 to 29%), and linoleic acids (35 to 40%). Levels of linolenic acid were very low, from about 1.0 to 2.5%. Total tocopherol content was relatively low in P. erosus (from 249 to 585 mg kg−1 oil) and P. tuberosus (from 260 to 312 mg kg−1 oil) compared with the levels found in P. ahipa grown under identical conditions (508 to 858 mg kg−1 oil). In all the samples, γ-tocopherol was predominant, accounting for more than 90% of the total tocopherol content. The combination of high oil and protein contents, together with high palmitic acid, low linolenic acid, and high γ-tocopherol concentration, makes these crops an interesting alternative as sources of high palmitic acid oil for the food industry.  相似文献   

17.
Lipophilic bioactive compounds in oils recovered from the seeds of eight pear (Pyrus communis L.) cultivars were studied. Oil yield in pear seeds ranged between 16.3 and 31.5 % (w/w) dw. The main fatty acids were palmitic acid (6.13–8.52 %), oleic acid (27.39–38.17 %) and linoleic acid (50.73–63.78 %), all three representing 96–99 % of the total detected fatty acids. The range of total tocochromanols was between 120.5 and 216.1 mg/100 g of oil. Independent of the cultivar, the γ‐tocopherol was the main tocochromanol and constituted approximately 88 %. The contents of the carotenoids and squalene were between 0.69–2.99 and 25.5–40.8 mg/100 g of oil, respectively. The β‐sitosterol constituted 83.4–87.6 % of total sterols contents, which ranged between 276.4 and 600.1 mg/100 g of oil. Three significant correlations were found between oil yield and total contents of sterols (r = ?0.893), tocochromanols (r = ?0.955) and carotenoids (r = ?0.685) in pear seed oils.  相似文献   

18.
Effects of culture temperature ranging from 20 to 34 °C on cell growth, polysaccharide biosynthesis and the bioactivity of polysaccharides of Agaricus blazei were evaluated via eight batch cultures in steps of 2 °C in a stirred tank bioreactor. Results indicated that the optimal temperature for the biomass was 28 °C with a cell yield of 780 mg g?1, while that for polysaccharide formation was 30 °C with a product yield of 230 mg g?1. Both the β‐glucan content and average molecular weight of the polysaccharides from different temperature‐controlled cultures were closely correlated with their tumour necrosis factor‐α (TNF‐α) release capability on macrophage cells. The polysaccharides from the low temperature range (20–24 °C) not only had higher relative content of β‐glucan and average molecular weight but also exhibited higher bioactivity compared with those from the high temperature range (30–34 °C). The optimal temperature for the production of bioactive polysaccharides of A. blazei was 24 °C, at which their relatively high molecular weight, β‐glucan content and TNF‐α release capability on macrophage cells were 1650 kDa, 188 mg g?1 and 1560 pg per 5 × 104 cells respectively. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
The present work reports the characterization and comparison of Moringa concanensis seed oil from Tharparkar (a drought hit area), Pakistan. The hexane-extracted oil content of M. concanensis seeds ranged from 37.56 to 40.06% (average 38.82%). Protein, fiber, moisture and ash contents were found to be 30.07, 6.00, 5.88 and 9.00%, respectively. The extracted oil exhibited an iodine value of 67.00; a refractive index (40 °C) of 1.4648; its density (24 °C) was 0.8660 mg mL−1; the saponification value (mg of KOH g−1 of oil) was 179.00; unsaponifiable matter 0.78%; color (1 in. cell) 1.90R + 19.00Y; and acidity (% as oleic acid) 0.34%. Tocopherols (α, γ, and δ) in the oil accounted for 72.11, 9.26 and 33.87 mg kg−1, respectively. Specific extinctions at 232 and 270 nm were 3.17 and 0.65, respectively. The peroxide and p-anisidine values of the oil were found to be 1.75 and 1.84 meq kg−1, respectively. The induction periods (Rancimat, 20 L h−1, 120 °C) of the crude oil was 10.81 h and reduced to 8.90 h after degumming. The M. concanensis oil was found to contain high levels of oleic acid (up to 68.00%) followed by palmitic, stearic, behenic, and arachidic acids up to levels of 11.04, 3.58, 3.44 and 7.09%, respectively. The results of the present analytical study, compared with those for other Moringa species and different vegetable oils, showed M. concanensis to be a potentially valuable non-conventional seed crop for high quality oil.  相似文献   

20.
Extruded products, particularly those which are corn‐based, are widely consumed salty or sweet snacks; moreover, they very often provide a basis for breakfast for people around the world. Extruded products are characterised by a low nutritional value, and a particularly low content of polyunsaturated fatty acids of the n‐3 group. An attempt was made to enrich extruded corn crisps with α‐linolenic acid (ALA) through the addition of refined linseed oil at an amount of 5 %. Corn crisps were produced with the addition of the oil concerned so that the concentration of ALA in the finished product was at least 2 g 100 g?1 (in a portion). With such a content of ALA, the crisps may be classified as ‘functional food’ in accordance with Commission Regulation (EU) No 432/2012 of May 2012. The following were tested: oxidative stability, and changes to the content of ALA during 6‐month storage of crisps with the addition of linseed oil and various concentrations of δ‐tocopherol and ascorbic acid. The crisps were packed in polyamide/polyethylene barrier film packages (30/70 µm), using either atmospheric air of argon for the packaging process. The study showed that with each applied concentration of δ‐tocopherol added to the linseed oil (200–800 mg 100 g?1), it had a strong pro‐oxidant effect. Packaging in argon atmosphere play very protective role in ALA stabilisation in functional corn crisp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号