首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamide 6 (PA6) nanocomposites based on epoxy resin‐modified montmorillonite (EP‐MMT) were prepared by melt processing using a typical twin‐screw extruder. X‐ray diffraction combined with transmission electron microscopy was applied to elucidate the structure and morphology of PA6/EP‐MMT nanocomposites, suggesting a nearly exfoliated structure in the nanocomposite with 2 wt % EP‐MMT (PA6/2EP‐MMT) and a partial exfoliated‐partial intercalated structure in PA6/4 wt %EP‐MMT nanocomposite (PA6/4EP‐MMT). The thermogravimetric analysis under air atmosphere was conducted to characterize the thermal–oxidative degradation behavior of the material, and the result indicated that the presence of EP‐MMT could inhibit the thermal‐oxidative degradation of PA6 effectively. Accelerated heat aging in an air circulating oven at 150°C was applied to assess the thermal–oxidative stability of PA6 nanocomposites through investigation of reduced viscosity, tensile properties, and chemical structure at various time intervals. The results indicated that the incorporation of EP‐MMT effectively enhanced the thermal–oxidative stability of PA6, resulting in the high retention of reduced viscosity and tensile strength, and the low ratio of terminal carboxyl group to amino group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40825.  相似文献   

2.
In this study, thermoplastic poly(ester ether) elastomer (TPEE) nanocomposites with phosphorus–nitrogen (P–N) flame retardants and montmorillonite (MMT) were prepared by melt blending. The fire resistance of the nanocomposites was analyzed by limiting oxygen index (LOI) and vertical burning (UL 94) tests. The results show that the addition of the P–N flame retardants increased the LOI of the material from 17.3 to 27%. However, TPEE containing P–N flame retardants only obtained a UL 94 V‐2 ranking; this resulted in a flame dripping phenomenon. On the other hand, TPEE containing the P–N flame retardant and organically modified montmorillonite (o‐MMT) achieved better thermal stability and good flame retardancy; this was ascribed to its partially intercalated structure. The synergistic effect and synergism were investigated by Fourier transform infrared spectroscopy and thermogravimetry. The introduction of o‐MMT decreased the inhibition action of the P–N flame retardant and increased the amount of residues. The catalytic decomposition effect of MMT and the barrier effect of the layer silicates are discussed in this article. The residues after heating in the muffle furnace were analyzed by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and laser Raman spectroscopy. It was shown that the intercalated layer silicate structure facilitated the crosslinking interaction and promoted the formation of additional carbonaceous char residues in the formation of the compact, dense, folded‐structure surface char. The combination of the P–N flame retardant and o‐MMT in TPEE resulted in a better thermal stability and fire resistance because of the synergistic effect of the mixture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41094.  相似文献   

3.
A novel inorganic compound, aluminum hypophosphite (AP), was synthesized successfully and applied as a flame retardant to glass‐fiber‐reinforced polyamide 6 (GF–PA6). The thermal stability and burning behaviors of the GF–PA6 samples containing AP (flame‐retardant GF–PA6) were investigated by thermogravimetric analysis, vertical burning testing (with a UL‐94 instrument), limiting oxygen index (LOI) testing, and cone calorimeter testing (CCT). The thermogravimetric data indicated that the addition of AP decreased the onset decomposition temperatures, the maximum mass loss rate (MLR), and the maximum‐rate decomposition temperature of GF–PA6 and increased the residue chars of the samples. Compared with the neat GF–PA6, the AP‐containing GF–PA6 samples had obviously improved flame retardancy: the LOI value increased from 22.5 to 30.1, and the UL‐94 rating went from no rating to V‐0 (1.6 mm) when the AP content increased from 0 to 25 wt % in GF–PA6. The results of CCT reveal that the heat release rate, total heat release, and MLR of the AP‐containing GF–PA6 samples were lower than those of GF–PA6. Furthermore, the higher additive amount of AP affected the mechanical properties of GF–PA6, but they remained acceptable. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Polyamide 6/montmorillonite (MMT) nanocomposites were prepared by melt compounding method comprising 1–7.5 wt % of Nanomer I.24 TL or 5 and 10 wt % of Cloisite 15A organically modified nanoclays. The composite samples were characterized by synchrotron X‐ray, thermal and FT‐IR spectroscopy methods looking for changes in the micro‐ and nanostructure of both PA6 matrix and MMT reinforcement as a function of the clay content and type. These data were discussed in conjunction with the mechanical properties of the respective nanocomposites. Generally, the Young's modulus was found to increase proportionally to the clay content being the highest in samples with strong aggregation of MMT at micron length scale. The tensile strength passed through a maximum at 2.5 wt % clay load presenting a homogeneous microstructure with almost no agglomeration. Increasing the amount of MMT produced less crystalline PA6 matrices, richer in γ‐PA6 polymorph and resulted in larger long spacings of PA6 due to expansion of both crystalline and amorphous domains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

5.
This article focuses on an improved method, i.e., improved in situ polymerization of ε‐caprolactam in the presence of melamine derivatives to prepare flame‐retardant melamine cyanurate/polyamide 6 (MCA/PA6) nanocomposites. The chemical structures of these synthetic flame retardant composites are characterized by Fourier‐transform infrared spectroscopy and X‐ray diffraction. Morphologies, mechanical properties, and thermal properties also are investigated by the use of transmission electron microscopy, mechanical testing apparatus, differential scanning calorimetry, and thermogravimetric analysis, respectively. Through transmission electron microscopy photographs, it can be found that the in situ‐formed MCA nanoparticles with diametric size of less than 50 nm are nanoscaled, highly uniformly dispersed in the PA6 matrix. These nanocomposites, which have good mechanical properties, can reach UL‐94 V‐0 rating at 1.6‐mm thickness even at a relatively low MCA loading level. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
In this work, cerium hypophosphite (CeHP) was synthesized and characterized by scanning electron microscope (SEM) and thermogravimetric analysis (TGA) test. CeHP presented rod‐like morphological feature with good thermal stability. Subsequently, CeHP was added into glass fiber reinforced polyamide 6 (GFPA) to develop flame retardant glass fiber reinforced polyamide 6 composites (FR‐GFPA). The flame retardancy of FR‐GFPA composites was characterized by limiting oxygen index (LOI), Underwriters Laboratories 94 testing (UL‐94), microscale combustion calorimeter, and cone calorimeter test. FR‐GFPA composite with 20 wt% CeHP loading passed UL‐94 V0 rating with a high LOI of 26.5 vol%. Cone Calorimeter test showed that peak of heat release rate (PHRR) and total heat release (THR) of FR‐GFPA composites were reduced 27.1% and 21.1% compared with those of GFPA. The mechanical measurement revealed that the tensile strength first increased and then decreased with the increase of CeHP loading. With 15 wt% CeHP loading, the tensile strength of FR‐GFPA composite was 43.0% higher than GFPA. TGA and char residue characterization revealed that the addition of CeHP could significantly promote the formation of condensed char residue. The FR‐GFPA composites obtained herein exhibited superior combined properties of fire resistance, thermal stability, and mechanical properties, demonstrating that CeHP will be a promising candidate for preparing high performance polyamide composites. POLYM. COMPOS., 37:3073–3082, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
In this work, polyamide 6 (PA6) as a charring agent has been used in combination with thermoplastic polyurethane (TPU)‐microencapsulated ammonium polyphosphate (MTAPP) forming intumescent flame retardants (IFRs) which applies in polypropylene (PP). The effects of the IFRs on the flame retardancy, morphology of char layers, water resistance, thermal properties and mechanical properties of flame‐retardant PP composites are investigated by limiting oxygen index (LOI), UL‐94 test, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mechanical properties test. The results show that the PP/MTAPP/PA6 composites exhibit much better flame‐retardant performances than the PP/MTAPP composites. The higher LOI values and UL‐94 V‐2 of the PP/MTAPP composites with suitable amount of PA6 are obtained, which is attributed to the thick and compact char layer structure evidenced by SEM. The results from TGA and DSC demonstrate that the introduction of PA6 into PP/MTAPP composites has a great effect on the thermal stability and crystallization behaviors of the composites. Furthermore, the mechanical properties of PP/MTAPP/PA6 composites are also improved greatly due to the presence of PA6 as a charring agent. POLYM. ENG. SCI., 55:1355–1360, 2015. © 2015 Society of Plastics Engineers  相似文献   

8.
In this study, polyamide 6 (PA6) with various contents of halloysite nanotubes (HNTs) and melamine cyanurate (MCA) were prepared by a twin‐screw extruder. The flame retardant and physical properties of PA6 composites were examined. X‐ray diffraction (XRD) patterns of PA6/HNTs and PA6/MCA/HNTs composites showed that HNTs as a nanoscale material dispersed in PA6 whether with MCA or not. Thermo gravimetric analyzer (TGA) results showed the presence of HNTs can improve thermal stability of PA6 and PA6/MCA composites. The incorporation of HNTs seemed to result the increase of crystallinity of PA6 and PA6/MCA composites from the differential scanning calorimetry (DSC) results. The combined of HNTs and MCA that leads to further improvements limiting oxygen index (LOI) value of PA6 to 31.7% exerted a positive effect on flame retardancy of PA6. What's more, some mechanical enhancements of PA6 with adding of HNTs were achieved and HNTs also made the tensile properties of PA6/MCA composites improved. POLYM. COMPOS., 36:892–896, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
Poly(vinyl alcohol) (PVA)/clay nanocomposites were synthesized using the solution intercalation method. Na ion‐exchanged clays [Na+–saponite (SPT) and Na+–montmorillonite (MMT)] and alkyl ammonium ion‐exchanged clays (C12–MMT and C12OOH–MMT) were used for the PVA nanocomposites. From the morphological studies, the Na ion‐exchanged clay is more easily dispersed in a PVA matrix than is the alkyl ammonium ion‐exchanged clay. Attempts were also made to improve both the thermal stabilities and the tensile properties of PVA/clay nanocomposite films, and it was found that the addition of only a small amount of clay was sufficient for that purpose. Both the ultimate tensile strength and the initial modulus for the nanocomposites increased gradually with clay loading up to 8 wt %. In C12OOH–MMT, the maximum enhancement of the ultimate tensile strength and the initial modulus for the nanocomposites was observed for blends containing 6 wt % organoclay. Na ion‐exchanged clays have higher tensile strengths than those of organic alkyl‐exchanged clays in PVA nanocomposites films. On the other hand, organic alkyl‐exchanged clays have initial moduli that are better than those of Na ion‐exchanged clays. Overall, the content of clay particles in the polymer matrix affect both the thermal stability and the tensile properties of the polymer/clay nanocomposites. However, a change in thermal stability with clay was not significant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3208–3214, 2003  相似文献   

10.
In this article, the nanocomposites thermoplastic polyester‐ether elastomer (TPEE) with phosphorous–nitrogen (P–N) flame retardants and montmorillonite (MMT) was prepared by melt blending.The fire resistance of nanocomposites was analyzed by limiting oxygen index (LOI) and vertical burning (UL94) test. The result shows that the flame retardants containing P–N increased the LOI of the material from 17.3 to 27%. However, TPEE containing P–N flame retardants just got UL94 V‐2 ranking, which resulted in the flaming dripping phenomenon. On the other hand, TPEE containing P–N flame retardant and organic‐modified montmorillonite (o‐MMT) achieved UL94 V‐0 rating for the special microstructure. The XRD and TEM morphology has demonstrated that the formation of multi‐ordered structure regarding restricted segmental motions at the organic–inorganic interface and stronger interactions between the clay mineral layers and the polymer chains. The structure was supported by the results of rheological properties and DSC analysis. The thermal degradation and char residue characterization was studied by thermal gravimetric analysis (TGA) and SEM‐EDX measurements, respectively. The TGA and SEM‐EDX have demonstrated that o‐MMT results in the increase of char yield and the formation of the thermal stable carbonaceous char. POLYM. COMPOS., 37:700–708, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
Flame retardant Nylon 6 (PA6)/montmorillonite (MMT) nanocomposites have been prepared using direct melt intercalation technique by blending PA6, organophilic clay and conventional fire retardants, such as the melamine cyanurate (MCA) and the combination of decabromodiphenyl oxide (DB) and antimony oxide (AO). Their morphology and combustion properties are characterized by XRD, transmission electron microscopy (TEM), UL‐94 test and Cone Calorimeter experiments. The flame retardant nanocomposites with MCA or DB and AO show lower heat release rate (HRR) peak compared to that of conventional flame retardant PA6. Meanwhile, the synergetic effect was studied between clay and DB‐AO.

TEM of PA‐n nanocomposite.  相似文献   


12.
蒙脱土(MMT)/PA纳米复合材料的制备与性能研究   总被引:8,自引:0,他引:8  
用熔融插层法制备 MMT/PA纳米复合材料 ,先合成有机改性蒙脱土 ,再将 PA6和 PA66分别与改性 MMT共混制成纳米复合材料。表征了其结构和力学性能 ,观察了 MMT/PA6和 MMT/PA66纳米复合材料的阻燃特性。发现纳米 MMT也能将 PA66的冲击强度提高近 50 % ,并能提高 PA6的 LOI,与其他阻燃剂起协同效应  相似文献   

13.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
Polymer/clay nanocomposites have some unique properties due to combination of flame resistance and improved mechanical and thermal stability properties which are important to enhance the material quality and performance. The objective of this work was to investigate the effect of organically modified montmorillonite (org‐MMT) on the thermal and flame retardant as well as hardness and mechanical properties of the nanocomposites based on the natural rubber (NR). It was shown that by the addition of 3 wt % of org‐MMT to NR, its aging hardness rise was decreased more than 55% and the ignition time was delayed about 150%. The reduction in heat release rate peak value was equal to 54% compared to the pristine NR. Addition of org‐MMT improved the thermal stability of the NR. Furthermore, nanocomposites which were calendared before curing showed much more thermal stability and fire resistance than those which contained similar amount of organoclay. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
This study describes the syntheses and thermal properties of aromatic boronic acids and their use as flame retardants. The possible flame‐retardancy mechanisms are also discussed. The materials were synthesized from aromatic bromides using one of two procedures. The first procedure involved traditional approaches to boronic acids, using lithium–halogen exchange and quenching with trimethylborate followed by hydrolysis. The second procedure used a nickel catalyst and a dialkoxy borane to generate aromatic dialkoxyboronates that were converted to boronic acids by acid hydrolysis. The thermal properties of these aromatic boronic acids were studied using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). These materials were blended into acrylonitrile–butadiene–styrene (ABS) and polycarbonate (PC) resins and tested for ignition resistance, using the UL‐94 flame test. A 10 wt % loading of 1,4‐benzenediboronic acid in polycarbonate gave a UL‐94 V‐0 result. This same diboronic acid showed flame retardancy and char formation in ABS, but this result was not quantifiable by the UL‐94 test. Burn times for the ABS samples often exceeded 5 min, thereby showing unusual resistance to consumption by fire. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1257–1268, 2000  相似文献   

16.
In this article, a novel flame‐retardant polyamide 6 (PA6) was prepared by introducing a halogen‐free flame‐retardant (OP1314). Graphite was added as a flame‐retardant synergistic agent, and the flame retardancy was enhanced, especially the melt‐dripping was forbidden and for the formula of PA6/12 wt % OP1314/5 wt % graphite, UL94 V‐0 grade was reached. Meanwhile, the graphite is also an excellent thermal conductive filler and with the addition of 5 wt % graphite in the flame‐retardant PA6 mixtures, the thermal conductivity (λ) rose to 1.2 W/mK which was nearly three times higher than the flame‐retardant PA6. Due to the good flame retardancy and improved thermal conductivity, the material could be suitable for applications in electronic and electrical devices. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46559.  相似文献   

17.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were synthesized by a simple technique of a monomer casting method, bulk polymerization. The products were purified by hot acetone extraction and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), examination of their mechanical properties, and light transmittance testing. Although XRD data did not show any apparent order of the MMT layers in the nanocomposites, TEM revealed parallel MMT layers with interlamellar spacings of an average of 9.8 nm and the presence of remnant multiplets of nonexfoliated layers. Therefore, PMMA chains were intercalated in the galleries of MMT. DSC and TGA traces also corroborated the confinement of the polymer in the inorganic layer by exhibiting the increase of glass‐transition temperatures and mass loss temperatures in the thermogram. Both the thermal stability and the mechanical properties of the products appeared to be substantially enhanced, although the light transmittances were not lost. Also, the materials had excellent mechanical properties. Measurement of the tensile properties of the PMMA/MMT nanocomposites indicated that the tensile modulus increased up to 1013 MPa with the addition of 0.6 wt % MMT, which was about 39% higher than that of the corresponding PMMA; the tensile strength and Charpy notched impact strength increased to 88 MPa and 12.9 kJ/m2, respectively. As shown by the aforementioned results, PMMA/MMT nanocomposites may offer new technology and business opportunities. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 348–357, 2005  相似文献   

18.
In this study, montmorillonite (MMT)/poly(?‐caprolactone)‐based polyurethane cationomer (MMT/PCL‐PUC) nanocomposites were prepared and their mechanical properties, thermal stability, and biodegradability were investigated. PCL‐PUC has 3 mol % of quaternary ammonium groups in the main chain. The MMT was successfully exfoliated and well dispersed in the PCL‐PUC matrix for up to 7 wt % of MMT. The 3 mol % of quaternary ammonium groups facilitated exfoliation of MMT. The 1 wt % MMT/PCL‐PUC nanocomposites showed enhanced tensile properties relative to the pure PCL‐PU. As the MMT content increased in the MMT/PCL‐PUC nanocomposites, the degree of microphase separation of PCL‐PUC decreased because of the strong interactions between the PCL‐PUC chains and the exfoliated MMT layers. This resulted in an increase in the Young's modulus and a decrease in the elongation at break and maximum stress of the MMT/PCL‐PUC nanocomposites. Biodegradability of the MMT/PCL‐PUC nanocomposites was dramatically increased with increasing content of MMT, likely because of the less phase‐separated morphology of MMT/PCL‐PUC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Abstract

In the present work, the influence of multiwalled carbon nanotubes (MWCNTs) on the flame retardancy and rheological, thermal and mechanical properties of polybutilen terephthalate (PBT) and polypropylene (PP) matrixes has been investigated. The carbon nanotube content in the thermoplastic materials was 2 and 5?wt‐%. The nanocomposites were obtained by diluting a masterbatch containing 20?wt‐% nanotubes using a twin‐screw extruder and the thermal properties were analysed by differential scanning calorimetry and thermogravimetric analysis; thermomechanical properties were determined by dynamic mechanical thermal analysis and the rheological behaviour was studied by a Thermo Haake Microcompounder. The results concerning the flame retardancy show that the MWCNTs are not equally effective as flame retardants in PP and PBT. The ignition time is increased only for PBT whereas the extinguishing time is decreased for PP and PBT. The reinforcement of the thermoplastics with multiwall carbon nanotubes is improved regarding the mechanical and thermal properties of the nanocomposites compared to pristine materials and the behaviour of thermoplastic nanocomposites regarding fire retardancy depends on the nature of the polymeric matrix.  相似文献   

20.
The mechanical properties and inflammability of polyamide 6 (PA6) nanocomposites incorporated with Montmorillonite organoclay (MMT) modified with thermal stable ionic liquid surfactants were investigated. The compatibility between ionic liquid‐treated MMT and PA6 matrix was improved and the intercalation morphology was achieved, which resulted in the increaseof tensile modulus. However, the addition of organo‐MMTs alone did not improve the inflammability of the PA6 nanocomposite, because of strong melt‐dripping behavior of PA6 matrix. Addition of auxiliary melamine polyphosphate (MPP) intumescent flame retardant to the nanocomposite prevented the melt dripping and enhanced inflammability performance. The enhanced inflammability of PA6/organoclay/MPP nanocomposites was attributed to the synergistic effect between imidazolium or phosphonium organo‐MMTs and intumescent flame retardant MPP. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40648.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号