首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superabsorbent polymer particles, consisting of partly neutralized, slightly crosslinked poly(acrylic acid), have been surface‐crosslinked photochemically. Surface crosslinking is required for many applications of superabsorbent polymers, such as disposable diapers, to control the flow and absorption of liquids in the gel bed. Photoinduced surface crosslinking has been achieved under UV irradiation (200–300 nm) with (NH4)2S2O8 as a photoactivated crosslinking agent. In comparison with the currently used thermal ester bridging method for surface crosslinking, the new photochemical method generates superabsorbent particles with superior properties, such as an improved flow of liquid through the gel bed, which utilizes the entire gel bed. These improved properties have been shown by water absorption capacity studies, fluid flow dynamics, environmental scanning electron microscopy, and low‐energy ion‐scattering studies. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The desired performance characteristics of absorbent products such as diapers include a low number of leaks, adequate liquid absorption capacity, and high skin dryness. By measuring the absorption behavior of mixtures of cellulose fluff pulp and superabsorbent polymers in nonimmersed conditions, we identify four major parameters that affect the swelling of the polymer in a composite: the Donnan ion‐exclusion effects of limiting the amount of liquid in contact with the superabsorbent polymer, the restriction of swelling by the physical constraints of the fibrous network that surrounds the polymer particles, the restriction of swelling by the capillary tension provided by the pores between the cellulose fibers, and the osmotic pressure of extracted polyelectrolytes. Swelling of the superabsorbent polymer in composites is always smaller than the value measured by immersion of the polymer followed by centrifugation. Donnan exclusion of ions from the gel phase results in about 16% less swelling than when the polymers are swollen in excess liquid. The swelling restriction imposed by the fiber network, which surrounds the granules, reduces swelling a further 10%. In addition, the presence of small pores between the fibers exerts capillary tension on the polymer and lowers the swelling by another 10%. The external compression of the composite pads does not reduce the extent of swelling of the superabsorbent polymer because the stress is supported by the fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2493–2507, 2005  相似文献   

3.
In this article, we report a novel physical and chemical composite foaming system, which was used to successfully prepare high‐performance and low‐cost composite superabsorbent [poly(sodium acrylic acid) (PAA–Na)] hydrogels based on acrylic acid by free‐radical polymerization in a water bath under a nitrogen atmosphere without the use of any organic solvents. The prepared hydrogels showed superabsorbent properties, high water‐absorption abilities and swelling rates, a lighter packing density, and a multiporous microstructure. Fourier transform infrared spectroscopy and scanning electron microscopy revealed that the sodium dodecyl sulfate surfactant, sodium bicarbonate chemical foaming agent, and 1,1,2‐trifluorotrichloroethane physical foaming agent were evenly distributed and grafted onto the PAA–Na matrix. Water‐absorption, swelling rate, and packing density testing confirmed that the superabsorbent had a high water‐absorption ability and swelling rate and a lighter packing density. Furthermore, we investigated the effects of different foaming agents, including chemical and physical foaming agents, on the swelling and water‐retention capabilities of the superabsorbent hydrogels (SAHs).The results show that the combination of these foaming agents significantly improved the water‐absorbing capacity. With the help of these foaming agents, we obtained PAA–Na hydrogels without any organic solvents for posttreatment or special porogens; this is an environmentally beneficial way to prepare SAHs for hygiene and biomedical products. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44149.  相似文献   

4.
The liquid permeability of composites of fiber and superabsorbent polymer (SAP) is critical to the proper performance of absorbent hygiene products such as infant diapers. Previous work has focused on empirically improving performance of absorbent composites by modifying the components, but a systematic study of the parameters affecting permeability of these systems has not been published. A good model of permeability would aid our understanding of the complex phenomenon of liquid permeability of pads that change in volume and porosity during swelling. In the present work, a mathematical model of liquid permeability in both gel beds and composites of fiber and gel is developed. The model uses a Carman–Kozeny approach with added calculation of the porosity and specific surface area that result upon swelling of the SAP, as well as subsequent compression of the swollen composite. The model incorporates ten parameters that are necessary to determine the permeability of the system. The implications of the model for improving permeability in absorbent composites are explored. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4075–4084, 2006  相似文献   

5.
To better use the waste nameko mushroom substrate (WNMS) and prevent its pollution into the environment, a novel superabsorbent polymer was synthesized via the UV irradiation copolymerization of acrylic acid and WNMS in the presence of an initiator (dimethoxy‐2‐phenylacetophenone and ammonium persulfate) and crosslinker N,N′‐methylenebisacrylamide. The factors that had an influence on the water absorbency of the superabsorbent polymer were investigated and optimized. Under the optimized conditions, WNMS–poly(acrylic acid) was obtained. Its swelling behaviors, which followed the pseudo‐second‐order swelling kinetic model, were investigated in distilled water (1701 g/g) and a 0.9 wt % NaCl solution (388 g/g). The water absorbency was 1011 g/g in a 0.1 wt % urea solution and 80% amount of urea diffused into the gels. The urea diffusion followed a Fickian diffusion mechanism. Moreover, the product showed excellent water retention capabilities under the condition of high temperature or high pressure. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40471.  相似文献   

6.
CO2 has been widely used in the process of enhanced oil recovery (EOR) over decades. However, the heterogeneity of oil reservoirs renders CO2 to flow preferentially into highly permeable zones, leaving tight areas unswept with oil unrecovered in these areas. While conventional water-swelling gels were used for blocking the “channeling” path, most of them experience the risks of shrinkage under high temperature and CO2-induced acidic environment. Here, we developed double swelling smart polymer microgels (SPMs) triggered by both heat and CO2. Such SPMs were prepared by copolymerization of acrylamide (AAm) in combination with N,N-2-(dimethylamino)ethyl methacrylate (DMAEMA) and [2-(methacryloyloxy) ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), and with N,N′-methylene bisacrylamide (MBA) as the crosslinker. These SPMs swell when temperature is higher than 65 °C or in the presence of CO2, with an ameliorative salinity tolerance ability. Artificial sand pack flooding carried by SMPs at 65 °C showed an elevated plugging efficiency at around 97% under a simulated pressurization at 5 MPa, proposing a valid candidate for future EOR applications during CO2 flooding. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48305.  相似文献   

7.
Laser scanning confocal microscopy (LSCM) has been used to characterize the changes in film thickness and local surface morphology of polymer coatings during the UV degradation process. With the noninvasive feature of LSCM, one can obtain thickness information directly and nondestructively at various exposure times without destroying the specimens or deriving the thickness values from IR measurement by assuming uniform film ablation. Two acrylic polymer coatings were chosen for the study, and the physical and chemical changes of the two systems at various exposure times were measured and analyzed. Those measurable physical changes caused by UV exposure include film ablation, formation of pits and other surface defects, and increases in surface roughness. It was found in both coatings that changes in measured film thickness by LSCM were not correlated linearly to the predicted thickness loss using the changes in the CH band obtained by the Fourier Transform Infrared (FTIR) spectroscopy measurements in the later degradation stages. This result suggested it was not a uniform film ablation process during the UV degradation. At later stages, where surface deformation became severe, surface roughness and profile information using LSCM were also proven to be useful for analyzing the surface degradation process Presented at the 81st Annual Meeting of the Federation of Societies for Coatings Technology, November 13–14, 2004 in Philadelphia, PA.  相似文献   

8.
Temperature responsive hydrogels based on ionic polymers exhibit swelling transitions in aqueous solutions as a function of shifting pH and ionic strength, in addition to temperature. Applying these hydrogels to useful applications, particularly for biomedical purposes such as drug delivery and regenerative medicine, is critically dependent on understanding the hydrogel solution responses as a function of all three parameters together. In this work, interpenetrating polymer network (IPN) hydrogels of polyacrylamide and poly(acrylic acid) were formulated over a broad range of synthesis variables using a fractional factorial design, and were examined for equilibrium temperature responsive swelling in a variety of solution conditions. Due to the acidic nature of these IPN hydrogels, usable upper critical solution temperature (UCST) responses for this system occur in mildly acidic environments. Responses were characterized in terms of maximum equilibrium swelling and temperature‐triggered swelling using turbidity and gravimetric measurements. Additionally, synthesis parameters critical to achieving optimal overall swelling, temperature‐triggered swelling, and sigmoidal temperature transitions for this IPN system were analyzed based on the fractional factorial design used to formulate these hydrogels. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42076.  相似文献   

9.
Superabsorbents used in agricultural and ecological projects with low‐cost, slow‐release fertilizers and environmentally friendly characteristics have been extensively studied. The use of a natural polymer as the matrix and then further polymerization with some functional material has become the preferred method. In this work, with natural guar gum (GG), partially neutralized acrylic acid, and sodium humate (SH) as the raw materials, ammonium persulfate as the initiator, and N,N′‐methylenebisacrylamide (MBA) as the crosslinker, GG‐g‐poly(sodium acrylate) (PNaA)/SH superabsorbents were synthesized through a solution polymerization reaction and were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The effects of the SH content and MBA concentration on the water absorbency were investigated. The results showed that the introduction of SH into the GG‐g‐PNaA system could improve the water absorbency, swelling rate, pH‐resistant property, and reswelling capability, and the superabsorbent containing 15 wt % SH had the highest water absorbency of 532 g/g of sample in distilled water and 62 g/g of sample in a 0.9 wt % NaCl solution. The slow release in water and water retention in sandy soil tests revealed that the superabsorbent could act as a fertilizer as well as an effective water‐saving material for agricultural applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Novel polyacrylamide/graphite oxide (PAM/GO) superabsorbent nanocomposites were synthesized by a simple solution polymerization of acrylamide using N,N ′‐methylenebisacrylamide as crosslinker and ammonium persulfate as initiator. The well dispersion of GO nanoplatelets in the polymeric network results in a remarkable improvement on the comprehensive swelling performance of the resulting superabsorbent nanocomposites. The water absorption experimental results show that the superabsorbent nanocomposites could absorb water as twice as that of crosslinked polyacrylamide (PAM) superabsorbent with a weight gain of 400 g g?1 with a low loading of GO. The salt tolerance and water‐retention ability of the resulting PAM/GO superabsorbent nanocomposites are also enhanced compared with PAM. Moreover, by embedding of ammonium salt into PAM/GO network, the PAM/GO superabsorbent nanocomposites also exhibit a slow release behavior of ammonium salt from network when swelling in water, which makes the PAM/GO superabsorbent nanocomposites multifunctional absorbent materials with great potential for agricultural and horticultural applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
A series of amphoteric, superabsorbent polymers [poly(acrylic acid‐co‐diallyldimethylammonium chloride)] with different molar ratios of anionic groups to cationic groups were prepared by solution polymerization to investigate their swelling behaviors and the controlled release of agrochemicals. Various factors, including the solution pH, the concentrations of different salt solutions, and the temperature, were studied. The dynamic parameters of hydrogels at different temperatures suggested that diffusion was Fickian at lower temperatures, whereas non‐Fickian diffusion prevailed at higher temperatures. A copolymer hydrogel with a low anionic‐group/cationic‐group ratio showed a higher swelling capacity in water and higher salt tolerance. Also, the anionic‐group/cationic‐group ratio was not the dominant factor in determining the water retention. A poly(acrylic acid‐co‐diallyldimethylammonium chloride) hydrogel could control the release of agrochemicals effectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 986–991, 2006  相似文献   

12.
Hydrolyzed collagen‐grafted‐poly[(acrylic acid)‐co‐(methacrylic acid)] hydrogels were synthesized by solution polymerization and confirmed by infrared spectroscopy. From sequential univariate analysis, the optimal molar ratio of acrylic acid: methacrylic acid was 92:8 in the presence of N,N′‐methylenebisacrylamide, ammonium persulfate, and N,N,N′,N′‐tetramethylethylenediamine at 0.12, 0.015, and 0.2% mol of the monomers, respectively. The water absorbency of this hydrogel was both pH‐ and temperature‐dependent, but was higher in nonbuffered water than in boric acid/citric acid/phosphate buffer under the same conditions. The optimal hydrogel could swiftly swell and deswell in neutral and acid solutions, respectively. Its potential application in drug delivery was examined using insulin and methylene blue as model payload drugs. Loading in a 50% (v v?1) ethanol solution gave a higher insulin loading level than in the buffer water. Insulin and methylene blue were both released at pH 6.8 but not at pH 1.2, but followed first order kinetics and the Higuchi equation, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45654.  相似文献   

13.
Polyacrylonitrile (PAN)‐grafted sodium salt of partially carboxymethylated tamarind kernel powder (Na‐PCMTKP‐g‐PAN, %G = 413.76 and %GE = 96.48) was prepared using the established optimal reaction conditions for ceric‐initiated graft copolymerization of acrylonitrile onto Na‐PCMTKP (DS = 0.15) in a homogeneous medium. The graft copolymer was hydrolyzed by 0.7N KOH solution at 90–95°C to yield the superabsorbent hydrogel H‐Na‐PCMTKP‐g‐PAN. The nitrile groups of Na‐PCMTKP‐g‐PAN were completely converted into a mixture of hydrophilic carboxamide and carboxylate groups during alkaline hydrolysis, followed by in situ crosslinking of the grafted PAN chains. The products were characterized spectroscopically and morphologically. The swelling behavior of the unreported superabsorbent hydrogel, H‐Na‐PCMTKP‐g‐PAN, was studied by carrying out its absorbency measurements in low‐conductivity water, 0.15M salt (NaCl, CaCl2, and AlCl3) solutions, and simulated urine (SU) at different timings. The swelling behavior of the hydrogel in different swelling media followed the second‐order kinetics. The values of the various swelling characteristics were reported. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Linear homopolymers of N‐acryloyl‐N′‐alkyl piperazine (N′‐alkyl: methyl, ethyl, or propyl) and their corresponding crosslinked hydrogels were prepared. The polymers showed good responses to changes in the pH of the medium due to the presence of tertiary amine functions that could be protonated at a low pH. The nature of the N′‐alkyl group attached to the piperazine amino nitrogen greatly affected the pKa of the amino group. This in turn influenced the solution behavior of the polymers and was studied with light scattering, potentiometry, and viscosity measurements. The basicity of the polymers increased with an increase in the chain length of the N′‐alkyl substituent. The intrinsic viscosity of the polymers in a good polar organic solvent such as dimethylformamide decreased slightly with increasing temperature because of decreased thermodynamic affinity (interaction) at high temperatures. The viscosity behavior of the polymers in sodium chloride solutions was similar to that of classical polyelectrolytes. The swelling property of the hydrogels was studied with water sorption measurements, and the swelling was by anomalous (non‐Fickian) transport. The diffusion coefficient of the gels in solutions of pH 2.6 increased with increasing N′‐alkyl chain length, whereas at neutral pH, the effect was reversed. This behavior was attributed to the increase in both the basicity and hydrophobicity of the gels with an increase in the chain length of the N′‐alkyl groups. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Monodisperse polymer particles composed of polystyrene (PS) and poly(1,6‐hexanedioldiacrylate) were prepared via one‐step seeded polymerization using PS as seed particles. For the study, the effects of the molecular weight of seed polymer particles, the ratio of the absorbed hexanediol dimethacrylate (HDDA) to the seed polymer particles (swelling ratio), and the seeded polymerization rate on the surface morphology of poly(St‐HDDA) particles were investigated. It was observed that the crater‐shaped defect was at the surface of poly(St‐HDDA) particles, independent of the molecular weight of seed polymer, and swelling ratio. But its surface morphology could be controlled by changing the rate of the seeded polymerization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2385–2394, 2007  相似文献   

16.
A series of novel multifunctional poly (acrylic acid‐co‐acrylamide) (PAA‐AM)/organomontmorillonite (O‐MMT)/sodium humate (SH) superabsorbent composites were synthesized by the graft copolymerization reaction of partially neutralized acrylic acid and acrylamide on O‐MMT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. The superabsorbent composites were characterized by means of Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The effect of the relative weight ratio of SH to O‐MMT on the water absorbency was studied, and the results indicated that the best water absorbency of 591 g/g in distilled water was obtained when an O‐MMT content of 20 wt % and an SH content of 30 wt % were incorporated. The superabsorbent composite possessed a good capacity for water retention; even after 30 days, 24.4 wt % of water could still be saved by the sand soil containing 1.0 wt % superabsorbent composite. The results from this study show that the water absorbency of a superabsorbent composite is improved by the simultaneous introduction of O‐MMT and SH into a PAA‐AM network in comparison with the incorporation of only O‐MMT or SH. Also, in comparison with PAA‐AM/MMT/SH, an appropriate amount of O‐MMT can benefit the developed composites with respect to their water absorbency, salt resistance, and capacity for water retention in sand soil. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Recently, using superabsorbent polymers (SAPs) are considered as a solution for reducing the water consumption particularly in agricultural applications. Presented here is the synthesis of a novel biocompatible SAP, utilizing for reducing the water consumption particularly in agricultural applications via graft copolymerization of hydroxypropyl distarch phosphate (HDP) based on tapioca starch with acrylic acid (AA), loading with clinoptilolite zeolites. A two-level factorial design of experiments, investigating the effect of the SAP composition on the water absorbency exhibited that the optimum SAP has the maximum water absorbencies of 1075 and 67 g g−1 in distilled water and 0.9 wt % NaCl solution, respectively. The chemical structure of the best superabsorbent was characterized using Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy analyses. The results revealed that AA was successfully grafted onto HDP and surface morphology of the superabsorbent was improved with incorporated clinoptilolite zeolites. In addition, the results of water absorption in different soil textures showed that within a first week after irrigation, the soil texture with 100% sand has the maximum water retention (69.6 g more than its control sample), as well as that with 50% sand, loses the absorbed moisture 49 days later than its control sample. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47365.  相似文献   

18.
采用紫外引发、微波引发方法分别制备聚丙烯酸钾(PAA-K)高吸水树脂,研究了交联剂聚乙二醇二丙烯酸酯(PEGDA)、光引发剂2,2二甲氧基苯基乙酮(BDK)、引发剂过硫酸铵(APS)以及丙烯酸(AA)中和度对PAA-K高吸水树脂吸水性能的影响以及两种方法制备PAA-K树脂性能的比较。采用傅里叶变换红外光谱仪、热失重分析仪、扫描电子显微镜等仪器对PAA-K高吸水树脂进行表征。结果表明,在最佳优化条件下,紫外引发PAA-K高吸水树脂在蒸馏水和生理盐水中的最大吸水倍率分别为3297 g/g和419 g/g;微波引发PAA-K高吸水树脂在蒸馏水和生理盐水中的最大吸水倍率分别为2861 g/g和414 g/g。  相似文献   

19.
Matrix tablets containing paracetamol and hydroxypropyl methylcellulose (HPMC 2906) of different viscosity grades (50, 400, 1500, and 4000 mPa·s) were evaluated for drug release and change in matrix tablet mass [ΔM (%)] after exposure to 0.09, 0.15, 0.31, and 0.52M ionic strengths of dissolution media. At 0.09 and 0.15M ionic strength, drug‐release profiles reflected the extended release characteristic; in addition the increase in ΔM was slow and continuous within first few hours. At 0.31M the higher viscosity grade matrices showed extensive initial swelling and the loss of extended release whereas at 0.52M a similar tablet performance is observed for the matrices of all viscosity grades. Notably, when extensive increase in ΔM occurs in the very beginning of exposure to medium the loss of extended release from the matrix is expected. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43604.  相似文献   

20.
The most commonly applied methods for the treatment of used adsorbents is to recover them in acid/alkaline medium or direct enflame them. This work dealt with a new potential and economic method to utilize a waste adsorbent. Poly(AAc/AM/SH) superabsorbent hydrogels have proved to be a good adsorbent for Cu2+ ions and after adsorption the hydrogels were recovered in acid medium. In this report, the Cu2+ ion adsorbed hydrogel has not undergone any regeneration process and applied directly to phosphate ion adsorption. The Cu2+ ions‐loaded poly(AAc/AM/SH) hydrogels, were stable within a wide pH range and suitable for phosphate ion adsorption. The factors affecting the phosphate adsorption, such as pH, ionic strength, contact time, temperature, initial concentration of the phosphate ion, and coexisting ions were systematically investigated. The phosphate adsorption was highly pH dependent; and the maximum adsorption of 87.62 mg/g was achieved at pH 6.1. The adsorption data fitted the Langmuir adsorption isotherm better than the Freundlich isotherm. The concomitant anions show profounder adverse influence on phosphate ion adsorption of poly(AAc/AM/SH)‐Cu hydrogel and the effect follows the order citrate > sulfate > bicarbonate > chloride > nitrate. The thermodynamic parameters including ΔH°, ΔG°, and ΔS° for the adsorption processes of phosphate ions on the gel were also evaluated, and the negative ΔG° and ΔH° confirmed that the adsorption process was spontaneous and exothermic. The adsorption kinetic results suggest that the adsorption process was well described by the pseudo second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号