首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(p‐styrene sulfonate‐co‐acrylic acid sodium) (PSA) from the copolymerization of acrylic acid sodium and p‐styrene sulfonate monomers were used to dope poly(3,4‐ethylene dioxythiophene) (PEDOT) to generate PEDOT–PSA antistatic dispersions. Compared to those of the PEDOT–poly(p‐styrene sulfonate sodium) (PSS), the physical and electrical properties of the PEDOT–PSA conductive liquids were much better. The PEDOT–PSA films possessed a better water resistance without a decrease in the conductivity. The sheet resistance of the PEDOT–PSA–poly(ethylene terephthalate) (PET) films was about 1.5 × 104 Ω/sq with a 100 nm thickness, the same as the PEDOT–PSS–PET films. The transmittance of the PEDOT–PSA–PET films exceeded 88%. Furthermore, the environmental dispersity of the PEDOT–PSA antistatic dispersion was apparently improved by the dopant PSA so that the stability was extraordinarily promoted. Meanwhile, the water resistances of the PEDOT–PSA–PET and PEDOT–PSA films were also enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45163.  相似文献   

2.
Electroconductive papers were produced by coating commercial base papers with blends of poly(3,4‐ethylenedioxythiophene)/poly(4‐styrenesulfonate) (PEDOT:PSS) and organic solvents. The bulk conductivities of the coated papers were measured using a four‐probe technique. One‐sided and two‐sided coating gave comparable conductivity levels. The presence of sorbitol and isopropanol in the PEDOT:PSS blends did not enhance the bulk conductivity of the coated paper, and with increasing concentrations of these solvents, the conductivity decreased due to dilution of the conducting component. Samples coated with PEDOT:PSS blends containing N‐methylpyrrolidone (NMP) or dimethyl sulfoxide (DMSO) exhibited a higher conductivity than those coated with pure PEDOT:PSS because of their plasticizing effect and conformational changes of PEDOT molecules indicated by the red shift and disappearance of the shoulder peak at about 1442 cm?1 in the Raman spectra of the coated samples. EDS imaging showed that PEDOT:PSS is distributed throughout the thickness direction of the paper. Contact angle measurements were made to monitor the hydrophilicity of the paper surface and total sulfur analysis was used to determine the amount of PEDOT:PSS deposited onto the paper. The tensile strength of all the paper samples increased slightly after treatment. Thus, it is demonstrated that enhanced bulk conductivity in the order of 10?3 S/cm can be achieved by using organic conductive materials and surface treatment techniques. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT–PSS) was blended with poly(vinyl alcohol) (PVA) to form 0, 10, 20, 30, 40, and 50 vol % PEDOT–PSS/PVA solutions, and their freestanding films were prepared with a simple and cost‐effective solution casting technique at 27 °C in the absence of additives. Field emission scanning electron microscopy images revealed changes in the cocontinuous network to a rodlike morphology in the composite films from 10 to 50 vol % PEDOT–PSS/PVA. The alternating‐current conductivity was found to obey Jonscher's power law. The obtained values of the dielectric constant at 27 °C were relatively high, and a maximum value of 6.7 × 104 at 100 Hz for 40 vol % PEDOT–PSS'/PVA was observed. The dielectric loss attained a maximum value of about 106 at 100 Hz for 40 vol % PEDOT–PSS/PVA. However, a decrease in the dielectric parameters was observed at 50 vol % PEDOT–PSS/PVA because of locally induced strain in the microstructure. The variations in polarization with respect to the applied electric field (P–E) were determined for 50, 100, and 500 Hz at 500 V for the freestanding composite films of lower concentrations up to 20 vol % PEDOT–PSS/PVA. In summary, the dielectric and P–E measurements confirmed that the electrical characteristics changed in accordance to the contribution from both resistive and capacitive sites in the PEDOT–PSS/PVA composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45079.  相似文献   

4.
Immobilization of ascorbate oxidase (AO) in poly(3,4‐ethylenedioxythiophene) (PEDOT)/multiwalled carbon nanotubes (MWCNTs) composite films was achieved by one‐step electrochemical polymerization. The PEDOT/MWCNTs/AO modified electrode was fabricated by the entrapment of enzyme in conducting matrices during electrochemical polymerization. The PEDOT/MWCNTs modified electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The experimental results showed that the composite films exhibited better mechanical integrity, electrochemical activity, higher electronic and ionic conductivity, and larger redox capacitance compared with pure PEDOT films, which would be beneficial to the fabrication of PEDOT/MWCNTs/AO electrochemical biosensors. The scanning electron microscopy studies revealed that MWCNTs served as backbone for 3,4‐ethylenedioxythiophene (EDOT) electropolymerization. Furthermore, the resulting enzyme electrode could be used to determine L ‐ascorbic acid successfully, which demonstrated the good bioelectrochemical catalytic activity of the immobilized AO. The results indicated that the PEDOT/MWCNTs composite are a good candidate material for the immobilization of AO in the fabrication of enzyme‐based biosensor. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Conductive polymers such as poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) or PEDOT:PSS has become increasingly important in present day organic electronics. PEDOT:PSS being a polymer is more durable than metals used in electronics and thus offers greater mechanical flexibility during operation. This article presents results regarding resistive behaviors of blade coated PEDOT:PSS films on polydimethylsiloxane (PDMS) substrate having random micro ridges as a function of axial strain and different temperatures. The average resistance of the blade coated PEDOT:PSS films were found to increase by 1.4 times between 35 and 45% axial strain. The resistances of the films were found to change within the temperature range of 25–230°C without any thermal morphological degradations and the polymer–polymer laminate also showed linear thermal actuation behavior. These results suggest that the blade coated PEDOT:PSS films on PDMS substrates with random micro ridges can be potentially useful in versatile applications like stretchable conductors, thermal actuators, thermoelectric generators, and as heating surfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41235.  相似文献   

6.
In this study, experimental and numerical studies were performed to investigate the relationship among the functionalization method, weight fraction of MWCNTs, thermal imidization cycle, and mechanical properties of various PAI/MWCNT composite films. Poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were prepared by solution mixing and film casting. The effects of chemical functionalization and weight fraction of multiwalled carbon nanotubes on thermal imidization and mechanical properties were investigated through experimental and numerical studies. The time needed to achieve sufficient thermal imidization was reduced with increasing multiwalled carbon nanotube content when compared with that of a pure poly(amide‐co‐imide) film because multiwalled carbon nanotubes have a higher thermal conductivity than pure poly(amide‐co‐imide) resin. Mechanical properties of pure poly(amide‐co‐imide) and poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were increased with increasing imidization time and were improved significantly in the case of the composite film filled with hydrogen peroxide treated multiwalled carbon nanotubes. Both the tensile strength and strain to failure of the multiwalled carbon nanotube filled poly(amide‐co‐imide) film were increased substantially because multiwalled carbon nanotube dispersion was improved and covalent bonding was formed between multiwalled carbon nanotubes and poly(amide‐co‐imide) molecules. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Poly(3,4‐ethylene dioxythiophene) (PEDOT) and graphite oxide (GO)/PEDOT composites (GPTs) doped with poly(sodium styrene sulfate) (PSS) were synthesized by in situ polymerization in aqueous media. The electrochemical capacitance performances of GO, PEDOT–PSS, and GPTs as electrode materials were investigated. The GPTs had a higher specific capacitance of 108 F/g than either composite constituent (11 F/g for GO and 87 F/g for PEDOT–PSS); this was attributable to its high electrical conductivity and the layer‐within/on‐layer composite structure. Such an increase demonstrated that the synergistic combination of GO and PEDOT–PSS had advantages over the sum of the individual components. On the basis of cycle‐life tests, the capacitance retention of about 78% for the GPTs compared with that of 66% for PEDOT–PSS after 1200 cycles suggested a high cycle stability of the GPTs and its potential as an electrode material for supercapacitor applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The effects of solution processing on the photovoltaic response of poly(n‐vinyl carbazole) (PVK) films were investigated. PVK films were formed by spincasting onto glass coated with indium tin oxide (ITO) and poly(3,4‐ethylenedioxythiophene) (PEDOT)–polystyrenesulfonate (PSS). Some of the PVK films were redissolved in chlorobenzene and redried in the absence or presence of an electric field. Illuminated current–voltage characteristics were measured for an ITO/PEDOT:PSS/PVK/Ca:Al device. Films spincast from a 50 mg/mL solution, redissolved, and dried in the absence of the electric field exhibited a 26% higher charge collection efficiency than films dried in the presence of the electric field. The increased charge collection efficiency was attributed to changes in the molecular configuration of the PVK films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
This paper reports a range of effective sequential chemical processes to enhance the thermoelectric performance of conducting poly(3,4‐ethylenedioxythiophene) films doped with poly(styrene sulfonate) anions (PEDOT:PSS). The electrical conductivity of the PEDOT:PSS films was significantly increased from 0.33 to 3748 S cm?1 after a series of sequential treatments with trifluoroacetic acid (TFA) while the Seebeck coefficient and thermal conductivity were slightly reduced from 17.5 ± 1.2 to 16.0 ± 1.1 μV K?1 and 0.537 to 0.415 W m–1 K?1 for the pristine film and treated film, respectively, leading to a significant improvement in power factor up to 97.1 ± 5.4 μW m–1 K?2. More importantly, around 80% of the electrical conductivity and Seebeck coefficient was retained after 20 days for these TFA‐treated PEDOT:PSS films, revealing the potential for real thermoelectric applications. © 2019 Society of Chemical Industry  相似文献   

10.
Composite conductive fibers based on poly(3,4‐ethylenedioxythiophene) (PEDOT)–polystyrene sulfonic acid (PSS) blended with polyacrylonitrile (PAN) were prepared via a conventional wet‐spinning process. The influences of the PEDOT–PSS content on the electrical conductivity, thermal stability, and mechanical properties of the composite fibers were investigated. The fibers with 1.83 wt % PEDOT–PSS showed a conductivity of 5.0 S/cm. The breaking strength of the fibers was in the range 0.36–0.60 cN/dtex. The thermal stability of the PEDOT–PSS/PAN composite fibers was similar to but slightly lower than that of the pure PAN. The X‐ray diffraction results revealed that both the pure PAN and PEDOT–PSS/PAN composite fibers were amorphous in phase, and the crystallization of the latter was lower than that of the former. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Hybrid films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were prepared with different molecular weights of poly(ethylene oxide) (PEO). The cross-linking reaction between PEO and PEDOT:PSS was performed at high temperature and confirmed by using differential scanning calorimeter (DSC), contact angle measurement, and solid-state 1H NMR. The effect of chemical reaction on the conductivity and morphology of these hybrid films was studied by using 4-point probe and atomic force microscope (AFM), respectively. As-spun PEO/PEDOT:PSS films have lower electric conductivity due to the addition of nonconductive PEO, and exhibits no molecular weight dependence on conductivity. After chemical cross-linking reaction at high temperature, only PEDOT:PSS films with lowest molecular weight PEO additives show enhanced conductivity with increasing reaction time. AFM result indicates that the heat-treated PEO/PEDOT:PSS hybrid films show grain-like morphology compared to ethylene glycol treated PEDOT:PSS films which shows continuous PEDOT domain. In the present work we demonstrate that the cross-linking reaction can be used to improve the wet stability of PEDOT:PSS nanofiber, showing good water resistance and excellent dimensional stability.  相似文献   

12.
The electrical conductivity of poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was enhanced by dipping the thin films prepared by spin coating technique in an aqueous DMSO solution. The low concentration range of DMSO in water between 0–5 vol % was studied in comparison with pure water and pure DMSO. It was found that the electrical conductivity dramatically increased as increasing the concentration of DMSO and reached the constant value of 350 S cm?1 at 2 vol % of aqueous DMSO solution. This could be explained by the conformational change of PEDOT chains from the coil structure to the linear or expanded coil structure as confirmed by Raman spectra. Further, white patches were obviously noticed on the surface of the films dipped in pure DMSO, indicating the phase separation of conductive PEDOT grains and associated PSS. The sulfur element of the dipped film surface was investigated by XPS. The XPS S2p core‐level spectra displayed that the unassociated PSS was considerably removed from the surface of PEDOT:PSS films dipped in pure water and 2 vol % of aqueous DMSO solution, indicating that the presence of water in the solvents is important to prominently promote the washing effect. Finally, UV–Vis spectra revealed the improved transparency of the films probably owing to the decreased film thickness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42108.  相似文献   

13.
In this study, the effect of solvents on the morphology and conductivity of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) nanofibers is investigated. Conductive PEDOT:PSS nanofibers are electrospun by dissolving a fiber‐forming polymer, polyvinyl alcohol, in an aqueous dispersion of PEDOT:PSS. The conductivity of PEDOT:PSS nanofibers is enhanced 15‐fold by addition of DMSO and almost 30‐fold by addition of ethylene glycol to the spinning dopes. This improvement is attributed to the change in the conformation of the PEDOT chains from the coiled benzoid to the extended coil quinoid structure as confirmed by Raman spectroscopy, X‐ray diffraction, and differential scanning calorimetry. Scanning electron microscopy images show that less beady and more uniform fiber morphology could be obtained by incorporation of ethylene glycol in the spinning dopes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40305.  相似文献   

14.
The flexible transparent electrodes were fabricated by line patterning of conductive inks consisting of poly(3,4‐ethylenedioxythiophene) doped with poly(4‐styrenesulfonic acid) (PEDOT:PSS) water dispersion, ethylene glycol, isopropyl alcohol, and tetraethoxysilane (TEOS) on polyethylene terephthalate (PET) films. The values of sheet resistance (Rs), total light transmittance, haze, figure‐of‐merit, and pencil hardness of the PEDOT:PSS‐TEOS/PET film were found to be 301 Ω/sq., 85.0%, 2.4%, 41, and 2H, respectively. Furthermore, a resistive touch screen panel was fabricated using the PEDOT:PSS‐TEOS/PET film as the top electrode. It was found that the drawing on the resistive touch screen panel was successfully displayed on the PC screen with good in‐plane uniformity and maximum linearity of 0.8%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45972.  相似文献   

15.
This paper reports a series of sequential post‐treatments using a polar solvent formamide to enhance the thermoelectric performance of poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonate) anions (PEDOT:PSS). The electrical conductivity of PEDOT:PSS films significantly increases from 0.33 S cm?1 for the pristine film to ≈2929 S cm?1 for the treated film and meanwhile the Seebeck coefficient maintains as high as 17.4 µV K?1, resulting in a power factor of 88.7 µW m?1 K?2. Formamide is a polar solvent with a high boiling point of 210 °C and high dielectric constant of 109, and PSS has a good solubility in it. Post‐treatment with formamide causes not only the phase segregation of PEDOT and PSS but also the removal of insulating PSS, therefore leading to the reorientation of PEDOT chains and enhancement in mobility without altering the doping level considerably. The cross‐plane thermal conductivity also reduces from 0.54 to 0.19 W m?1 K?1 after the post‐treatment, leading to a figure of merit (ZT) value of 0.04 at room temperature.  相似文献   

16.
A series of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/copper phthalocyanine disulfonic acid (PEDOT: PSS/CuPc-[SO3H]2) composite films were prepared by using CuPc-(SO3H)2 as the dopant. EG treatment was applied to further improve the thermoelectric properties of PEDOT: PSS/CuPc-(SO3H)2 composites. Structural analyses indicated the strong π − π interactions existed between PEDOT: PSS and CuPc-(SO3H)2, and led to more ordered regions in the composite films, and benefit the conductivity. CuPc-(SO3H)2 can greatly improve the thermoelectric properties of PEDOT: PSS/CuPc-(SO3H)2 composite films, which have a Seebeck coefficient of 13.2 μV K−1 and a conductivity of 2.8 × 105 S/m with 20 wt% CuPc-(SO3H)2 at room temperature, and the corresponding power factor is 48.8 μW m−1 K−2, which is almost 6.83 times higher than the PEDOT: PSS films without CuPc-(SO3H)2.  相似文献   

17.
Nanocolloidal polypyrrole (PPy):poly(styrene sulfonate) (PSS) particles were synthesized by chemical oxidative polymerization using 15 wt% of PSS. The highly processable polymer composite (PPy:PSS) was spin‐coated at 4000 rpm on fluorine‐doped tin oxide glass and subsequently employed as a counter electrode (CE) for dye‐sensitized solar cells (DSCs). PPy:PSS multilayer (one, three, five) CEs were treated with CuBr2 salt, which enhances the efficiency of the DSCs. Optical studies reveal that a bulkier counterion hinders interchain interactions of PPy which on salt treatment shows a moderate redshift in absorption maxima. Salt‐treated PPy:PSS films exhibit lower charge transfer resistance, higher surface roughness and better catalytic performance for the reduction of I3?, when compared with untreated films. The improved catalytic performance of salt‐treated PPy:PSS multilayer films is attributed to charge screening and conformational change of PPy, along with the removal of excess PSS. Under standard AM 1.5 sunlight illumination, salt treatment is shown to boost the efficiency of multilayer PPy:PSS composite film‐based DSCs, leading to enhanced power conversion efficiency of 6.18, 6.33 and 6.37% for one, three and five layers, respectively. These values are significantly higher (ca 50%) than those for corresponding devices without CuBr2 salt treatment (3.48, 2.90 and 2.01%, respectively). © 2016 Society of Chemical Industry  相似文献   

18.
Polymer nanocomposites (NCs) are a special class of materials having unique properties and wide application potential in electronics and other diverse areas. In this study, NCs consisting of poly(3,4‐ethylenedioxythiophene)/poly(4‐styrene sulfonate) (PEDOT:PSS) matrix reinforced with graphite nanosheets were fabricated by solution method. The graphite used was functionalized before fabrication of NCs. The functionalized graphite was characterized by transmission electron microscopy (TEM) and Fourier transform Infrared spectroscopy (FTIR) technique. The NCs prepared were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and FTIR technique. The conductivity studies of the prepared NCs were carried out. The prepared NCs films were investigated for the detection of nitrobenzene vapors. The detection mechanism is based on measuring resistivity changes that occur in a NC due to the absorption of nitrobenzene vapors by PEDOT:PSS film. These sensors exhibited excellent response at room temperature when exposed to vapors of nitrobenzene. Sensitivity as high as 18.5% was observed for PEDOT:PSS/NGPs composite. The chemresistor exhibits a fast response (~1.14 min) and good recovery time (~1–2 min). The response of NC to the nitrobenzene vapors is reproducible. POLYM. ENG. SCI., 53:2045–2052, 2013. © 2013 Society of Plastics Engineers  相似文献   

19.
High conductivity, good stability, and high transmittance in the visible region are the three essential requirements for the polymer electrodes used in the optoelectronic devices. It was found that with addition of diols, such as ethylene glycol, diethylene glycol, or poly(ethylene glycol) (PEG), to the poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) emulsion before spin-coating could increase dramatically the conductivities of the resultant PEDOT:PSS thin films from 1 to 90 S cm?1 while maintain the optical transparency of the modified thin films. With up to ?2.4 V potential applied, the PEDOT:PSS with PEG 200 additive does not show obvious color change, indicating its good electrochemical stability as polymer electrode. Detailed studies on the structures and morphologies of these modified PEDOT:PSS thin films, in comparison to that of PEDOT:PSS without additives were carried out using AFM, Raman, and FTIR to investigate the underlying mechanisms.  相似文献   

20.
The results of conductivity investigation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) thin films doped with different multi-walled carbon nanotubes (MWCNTs) concentrations were studied. The role of MWCNTs as a conductive filler on the mechanism of conductivity enhancement in the composite film was further investigated by X-ray diffraction (XRD), Fourier transform Roman spectroscopy (FT-RM), X-ray photoelectron spectroscopy (XPS) and Atomic force microscopy (AFM). The increase of the conductivity is likely to be due to two effects, the “π-π interaction” effect and the “channel” effect. The former is π-π interaction between the thiophene rings of PEDOT backbone and MWCNTs, and the electronic density transfer occurs from PEDOT to MWCNTs in M-PEDOT/PSS, so that the charge becomes more delocalized on the PEDOT chains. The latter stems from the formation of some conductive MWCNTs channels in the PEDOT/PSS matrix. These two effects can help charge transport and enhance the conductivity of composite films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号