首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本工作的主要目的是实验研究使用新型还原剂二甲基羟胺+甲基肼在1B槽中实现铀钚分离的工艺条件。主要从3个角度对铀钚分离进行了考察:1)1BF新配制,二甲基羟胺尚未氧化时的铀钚分离状况;2)1BF陈化时间(大于两个月)对铀钚分离的影响;3)二甲基羟胺部分氧化后对铀钚分离的影响。  相似文献   

2.
在PUREX流程萃取过程中,高产额裂变产物元素Zr与TBP降解产物HDBP,H2MBP等生成配合物是导致产生界面污物的主要因素。在探讨污溶剂中Zr和HDBP洗涤去污机理的基础上,采用草酸偏二甲肼为洗涤剂,以配制的30%TBP/OK-Zr,30%TBP/OK-HDBP两种模拟污溶剂为研究物,以X射线荧光光谱法测定有机相中的Zr含量,自动电位滴定法测定有机相中HDBP的含量。研究了洗涤温度、相比、洗涤剂浓度等因素对洗涤效果的影响;对比了草酸偏二甲肼和碳酸钠对Zr和HDBP洗涤效果。草酸偏二甲肼水溶液洗涤30%TBP/OK中Zr和HDBP时,适宜条件为:温度40~60℃,相比V(o)/V(a)=1,草酸偏二甲肼浓度为0.4~0.6mol/L,为提高对HDBP的洗涤效果,在加入少量偏二甲肼,使溶液中游离偏二甲肼浓度为0.2~0.3 mol/L时,草酸偏二甲肼洗涤Zr的效果略优于碳酸钠,DF(Zr)可达143;洗涤HDBP的效果与碳酸钠相当,DF(HDBP)可达100以上。  相似文献   

3.
本文使用TBP萃取色层法分离辐照过的铀元件溶解液中的微量铀,为同位素稀释质谱法测定燃耗制备样品。方法对铀的回收率达98%,对裂变产物核素和钚的去污因数达10~3—10~4。  相似文献   

4.
乏燃料后处理先进二循环流程在铀钚分离及钚的纯化过程中使用的二甲基羟胺(DMHAN)一甲基肼(MMH)是一种首次应用的无盐还原体系,为将Purex流程U/Pu分离阶段中得到的Pu(Ⅲ)氧化为Pu(Ⅳ),首先需将1BP中的还原剂N,N一二甲基羟胺和单甲基肼氧化破坏。  相似文献   

5.
本工作研究采用TBP色层柱与7402季铵盐色层柱组合的萃取色层法实现对大量铀中痕量钚的分离。实验考察了影响分离效果的各种因素,确定了分离流程。对0.1g铀和6×10-9g钚样品,该分离流程对铀的去污因子为107,钚的收率大于98%。这一结果满足了在MC-ICP-MS上准确测量大量铀中痕量钚  相似文献   

6.
本文提供了一个阴离子交换分离,控制电位库仑法测定辐照后核燃料元件溶解液大量铀中小量钚的方法。钚(Ⅳ)在7.5 NNO_3介质中吸附在711型树脂床上,用7.5N HNO_3洗涤铀、裂变产物和其它杂质元素后,用0.5N HNO_3-0.02M NH_2OH·HCI洗涤钚,最后以1 NHN0_3为支持电解质,金丝网作工作电极进行库仑测定。测定范围为1—4 mg钚。用化学校正方法,对辐照后核燃料元件溶解液样品7次平行测定的相对标准偏差为±0.33%。  相似文献   

7.
核燃料后处理先进二循环流程在铀钚分离及钚的纯化过程中使用的二甲基羟胺(DMHAN)-甲基肼(MMH)是一首次应用的无盐还原体系。为将Purex流程U/Pu分离阶段中得到的Pu(Ⅲ)氧化为Pu(Ⅳ),首先需将1BP槽中的还原剂N,N-二甲基羟胺和单甲基肼氧化破坏。此先进流程的主要目标之一是减少后处理过程中产生的固体废物。  相似文献   

8.
二正辛基亚砜萃取铀、钚、钍和镎   总被引:4,自引:0,他引:4  
本文报道了二正辛基亚砜(DOSO)—二甲苯从硝酸介质中萃取铀、钚、钍和镎的实验结果。DOSO对这些元素的萃取规律类似于TBP,但分配系数(D)比TBP高,尤其是对钚。上述元素的D值均随水相HNO_3浓度增加而增加,达到最大值后下降。用斜率法测得铀、钚、镎的溶剂化数均为2,钍为3,硝酸为1。本工作对盐析剂、络合阴离子(C_2O_4~(2-)、F~-、SO_4~(2-)等)、温度等对萃取的影响以及铀、钚的反萃条件进行了研究,还计算了萃取平衡常数和铀的ΔH值。  相似文献   

9.
研究了辐照的TBP从不同水相溶液中萃取铌的行为和对有机相中铌的洗涤效果。TBP的辐照剂量为1×10~3~7.5×10~5Gy。观测了钼、铀和F~-等对辐照的TBP萃取铌的影响。初步探讨了界面污物与D_(Nb)的关系及其对~(95)Nb的吸附。结果表明:辐照的TBP萃取铌时,D_(Nb)增加的主要原因是HDBP的作用。TBP和HDBP间的反协同效应使辐照的TBP萃取铌受到抑制。钼会明显地削弱TBP和HDBP的反协同效应,因而使辐照的TBP萃取铌时D_(Nb)显著增加。  相似文献   

10.
<正>磷酸三丁酯(TBP)是一类具备优良性能的萃取剂,当前许多国家铀纯化与乏燃料后处理大部分都通过TBP作为萃取剂、煤油作为稀释剂的TBP/煤油体系对铀、钚等核素实施萃取纯化,经多次循环使用后,因为其受到化学与辐照作用降解,导致性能变差,使得萃取效率降低。由于含有  相似文献   

11.
TRPO流程中U的反萃Ⅰ.反萃剂的选择   总被引:6,自引:5,他引:1  
研究了TRPO萃取流程中的H2C2O4反萃Np、Pu段,在含U的TRPO相中出现沉淀的条件及消除办法。结果表明,提高洗涤段硝酸浓度,使TRPO相中H2C2O4与HNO3的浓度比小于3,在该相中就不会出现沉淀。当用0.2mol/L或0.8mol/LHNO3洗涤TRPO相2次后,再用(NH4)2CO3或Na2CO3溶液反萃U时,水相也不会产生(NH4)2C2O4或Na2C2O4沉淀,保证萃取过程正常进行  相似文献   

12.
进行了氨基羟基脲(HSC)的硝酸水溶液对30%(体积分数,下同)磷酸三丁酯(TBP)/煤油中高浓度四价钚(Pu(Ⅳ))的还原反萃行为研究,并采用试管串级实验对HSC在钚净化浓缩循环中反萃段工艺进行了验证。结果表明:HSC能有效地实现有机相中高浓Pu(Ⅳ)的反萃;采用13级逆流反萃试管串级实验(还原反萃段10级,补充萃取段3级),对PUREX流程钚净化浓缩反萃段工艺进行了验证,在相比(2BF∶2BX∶2BS)为1∶0.25∶0.15的条件下,Pu的收率为99.99%;钚中去铀的分离因子SF(U/Pu)=3.7×105。HSC作为还原反萃剂,可以实现30%TBP/煤油中高浓度Pu(Ⅳ)的有效反萃,在钚净化浓缩循环工艺中有良好的应用前景。  相似文献   

13.
研究了30%TBP-煤油在不同的硝酸-草酸混合溶液中对Np,Pu各价态的萃取分配,在HNO  相似文献   

14.
研究在模拟高放废液中加入乙羟肟酸(AHA)以消除酰胺荚醚(TBOPDA)萃取模拟高放废液过程中的界面污物。萃取实验结果表明:在模拟高放废液中加入AHA可显著降低Zr(Ⅳ)在两相中的分配比,此时,Pu(Ⅳ)的分配比仍足够大,它不影响TBOPDA对Pu(Ⅳ)的回收。反萃实验表明:在所研究的反萃条件下,1级反萃即可有效反萃TBOPDA有机相中的Zr(Ⅳ);3次错流反萃可有效反萃TBOPDA有机相中的Pu(Ⅳ);反萃液中加入AHA对Am(Ⅲ)的累计反萃率影响很小;提高反萃液的酸度可抑制TBOPDA有机相中Am(Ⅲ)的反萃。  相似文献   

15.
在乏燃料后处理Purex流程中,共去污循环的安全稳定运行是整个生产过程的关键之一。Pu(Ⅵ)在TBP中的分配系数比Pu(Ⅳ)的低而易导致钚流失。文章采用计算机模拟1A萃取槽中UO2+2、HNO3、Pu4+、PuO2+2的运行。计算结果表明,Pu(Ⅵ)的流失是造成钚收率降低的主要因素之一,提高Pu(Ⅵ)的收率能够有效提高钚产品的收率。当1AF中ρ(U)=225g/L、c(HNO3)=3.0mol/L、ρ(Pu)=2.20g/L,1AS中c(HNO3)=3.0mol/L,1AX为30%TBP/煤油,流比1AF∶1AS∶1AX=1.25∶0.75∶3.00时,为使1A萃取槽中钚的收率不低于99.9%,应控制1AF料液中Pu(Ⅵ)量(占总Pu百分数)不超过7%。  相似文献   

16.
TRPO流程中U的反萃:Ⅱ.(NH4)2CO3对U的反萃   总被引:1,自引:1,他引:0  
研究了用 50 g/ L( N H4 )2 C O3 溶液从含 U 的 T R P O 相中反萃 U 的条件。测定了反萃平衡时间、相比、反萃次数、温度及有机相中 U 的质量浓度对反萃率的影响。用( N H4)2 C O3 反萃 U 比原流程的 Na2 C O3 可减少 2 级,反萃液中不会析出( N H4)2 C2 O4 结晶。( N H4)4[ U O2( C O3)3 ]在加热转型时, N H+4 、 C O2-3 及少量 C2 O2-4 、 N O-3 均可挥发除去。  相似文献   

17.
DHDECMP-TBP/煤油从模拟高放废液中萃取回收Am-Gd的研究   总被引:7,自引:3,他引:4  
研究了DHDECMP-TBP/煤油萃取Am^3+、Gd^3+的各影响因素,在单级萃取实验的基础上,用0.60mol/LDHDECMP-1.40mol/LTBP/煤油为有机相对模拟高放废液进行了逆流串级萃取实验降流串级反萃实验,成功地从模拟高放废液中分离回收了Am^3+和Gd^3+。  相似文献   

18.
本文在HNO3和H2SO2混合介质中,用环己酮从高放废液及其处理 样品中定量萃取^99Tc,分别以K2CO3-H2O2及NaCO2洗涤有机相去除钌,铑,碘等核素。有机相与溶水性的闪烁液混匀,液闪法测量^99Tc的活度。  相似文献   

19.
研究了1-苯基-3-甲基-4-苯甲酰基吡唑酮-5(PMBP)萃取HNO3溶液中镅、钚的性能,研究了水相酸度、相比(有机相∶水相)、萃取次数、萃取剂浓度等对PMBP萃取性能的影响。实验结果表明,在酸度为2 mol/L、相比为1∶1时,0.1 mol/L PMBP-二甲苯对分析样品进行一次萃取一次洗涤即能有效的分离大量钚,满足α能谱对微量镅的测定。该方法钚与镅的分离系数约为106,在C(Pu)/C(Am)≥106时对Am的相对偏差不大于8%。  相似文献   

20.
Using the advanced aqueous reprocessing system named NEXT process, actinides recovery was attempted by both a simplified solvent extraction process using TBP as an extractant for U, Pu and Np co-recovery and the SETFICS process for Am and Cm recovery from the raffinate. In U, Pu and Np co-recovery experiments a single cycle flow sheet was used under high nitric acid concentration in the feed solution or scrubbing solution. High nitric acid concentration in the feed solution aided Np oxidation not only in the feed solution, but also at the extraction section. This oxidation reaction accomplished Np extraction by TBP with U and Pu. Most of Np could be recovered into the product solution. In the SETFICS process, a TRUEX solvent of 0.2 mol/dm3 CMPO and 1.4 mol/dm3 TBP in n-dodecane was employed instead of 0.2 mol/dm3 CMPO and 1.0 mol/dm3 TBP in n-dodecane in order to increase the loading of metals. Instead of sodium nitrate, hydroxylamine nitrate was applied to this experimental flow sheet in accordance with a “salt-free” concept. The counter current experiment succeeded with the Am and Cm product. On the high-loading flow sheet, compared with the previous flow sheet, the flow of the aqueous effluents and spent solvent were expected to decrease by about one half. Two solvent extraction experiments for actinides recovery demonstrated the utility of the flow sheet of these processes in the NEXT process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号