首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly active two-dimensional (2D) nanocomposites, integrating the unique merits of individual components and synergistic effects of composites, have been recently receiving attention for gas sensing. In this work, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites were synthesized using In2O3 nanocubes and layered Ti3C2Tx MXene via a facile hydrothermal self-assembly method. Characterization results indicated that the In2O3 nanocubes with sizes approximately 20–130 nm in width were well dispersed on the surface of layered Ti3C2Tx MXene to form numerous heterostructure interfaces. Based on the synergistic effects of electronic properties and gas-adsorption capabilities, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites exhibited high response (29.6%–5 ppm) and prominent selectivity to methanol at room temperature. Meanwhile, the low detection concentration could be reduced to ppm-level, the response/recovery times are shortened to 6.5/3.5 s, excellent linearity and outstanding repeatability. The strategy of compositing layered MXene with metal oxide semiconductor provides a novel pathway for the future development of room temperature gas sensors.  相似文献   

2.
《Ceramics International》2020,46(12):20306-20312
Although the antibacterial properties of MXene nanosheets containing Ti3C2Tx are known, their antifungal properties have not been well studied. Herein, we present for the first time a report on the antifungal properties of Ti3C2Tx MXene. The Ti3C2Tx MXene was obtained by first exfoliating MAX phase of Ti3AlC2 with concentrated hydrofluoric acid, then the Ti3C2Tx was intercalated and deliminated by ethanol treatment and ultrasonication process. The delaminated Ti3C2Tx MXene nanosheets (d-Ti3C2Tx) were characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), X-ray diffraction spectroscopy (XRD), and Raman spectroscopy. It was found that Ti3C2Tx MXene was characterized by lamellar structure alternating with layers of Ti, Al and C. The EDX results revealed that the delaminated Ti3C2Tx MXene nanosheets were composed of Ti, C, Si, O, F, and a trace amount of Al. The XRD and Raman spectra further indicated the elimination of Al and the formation of two-dimensional Ti3C2Tx MXene nanosheets. The antifungal activity of the delaminated Ti3C2Tx MXene was determined against Trichoderma reesei using the modified agar disc method. Observation using inverted phase contrastmicroscopy revealed inhibited fungus growth with the absence of hyphae around the discs treated wtih MXene. The surrounding of the control groups without an inclusion of MXene was found with large number of hyphae and spores. In addition, the spores of the fungi treated with the samples containing d-Ti3C2Tx MXene nanosheets did not germinate even after 11 days of culture. The results demonstrated disruption to the hemispheric structural formation of fungi colony, inhibition of hyphae growth and cell damage for fungi grown on the d-Ti3C2Tx MXene nanosheets. These new findings suggest that d-Ti3C2Tx MXene nanosheets developed in this work could be a promising anti-fungi material.  相似文献   

3.
Ti3C2Tx MXene, an emerging two-dimensional (2D) ceramic material, has rich interfaces and strong conductive networks. Herein, we have successfully built a heterostructure between Ti3C2Tx MXene and WS2 to improve electromagnetic absorption performance. X-ray diffraction and X-ray photoelectron spectroscopy were used to determine the successful synthesis of Ti3C2Tx/WS2 composite. Field emission scanning electron microscopy and transmission electron microscopy images show that WS2 nanosheets are evenly dispersed on the accordion-like Ti3C2Tx MXene. Importantly, Ti3C2Tx MXene/WS2 composite has sufficiently high dielectric loss and impedance matching due to self-adjusting conductivity and 2D heterostructure interfaces. As a result, the Ti3C2Tx/WS2 composite has a minimum reflection loss (RLmin) of −61.06 dB at 13.28 GHz. Besides, it has a broad effective absorption bandwidth (EAB) of 6.5 GHz, with EAB >5.0 GHz covering a wide range of thickness. Such impressive results may provide experience for the application of Ti3C2Tx ceramics and 2D materials.  相似文献   

4.
Ti3C2Tx MXene has been reported to be a metallic two-dimensional (2D) material with high conductivity, whereas its photoluminescence (PL) mechanism is still under debate. Herein, we demonstrate that large Ti3C2Tx MXene flakes exhibit tunable PL under ambient conditions. The as-prepared Ti3C2Tx MXene flakes emit blue, yellow-green and red light under different excitation wavelengths. Their PL emission wavelengths redshift as the excitation wavelength changes from violet to red light. Surface modification of the MXenes can further tune the PL peak wavelength into the near infrared region. Using density function theory (DFT) calculations, this excitation wavelength-dependent PL can be correlated to TiO2 defects that exist on the surface of Ti3C2Tx. Our study expounds on the optical properties of Ti3C2Tx MXene and is helpful for comprehensively understanding this novel material.  相似文献   

5.
《Ceramics International》2022,48(7):9059-9066
Highly active two-dimensional (2D) nanocomposites have been widely concerned in the field of gas sensors because of their unique advantages and synergistic effects. 2D/2D SnO2 nanosheets/Ti3C2Tx MXene nanocomposites were synthesized by using layered Ti3C2Tx MXene and uniform SnO2 nanosheets by hydrothermal method. Characterization results show that the SnO2 nanosheets are well dispersed and vertically anchored on the layered Ti3C2Tx MXene surface, forming heterogeneous interfaces. Based on the gas-adsorption capabilities and synergistic effects of electronic properties, SnO2 nanosheets/Ti3C2Tx MXene nanocomposites show high triethylamine (TEA) gas-sensing performance at low temperature (140 °C). The sensor responses of the nanocomposites and pure SnO2 nanosheets to 50 ppm of TEA are 33.9 and 3.4, respectively. An enhancement mechanism for SnO2 nanosheets/Ti3C2Tx MXene nanocomposites is proposed for highly sensitive and selective detection of TEA at low temperature. The combination strategy of two-dimensional metal oxide semiconductor and multilayer MXene provides a new way for the development of cryogenic gas sensors in the future.  相似文献   

6.
A novel free radical scavenger, multi-layered Ti3C2Tx MXene (ML-Ti3C2Tx), has been studied by evaluating its scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH?). It exhibits high scavenging efficiency (95% in 10 min) at low dosage (0.06 mg/mL). Based on the analysis of structure and surface states of ML-Ti3C2Tx before and after reaction with DPPH? and a series of comparative experiments, including few-layered Ti3C2Tx MXene (FL-Ti3C2Tx), original Ti3AlC2, and soluble Ti species derived from ML-Ti3C2Tx, the observed high scavenging activity is attributed to the intrinsic reducing property of ML-Ti3C2Tx rather than the hydrogen donation ability from surface functional groups. A model is proposed to explain the scavenging mechanism.  相似文献   

7.
Two-dimensional layered Ti3C2Tx MXene was prepared through hydrothermal etching method with LiF and hydrochloric (HCl) acid. Ti3C2Tx was further treated with oxygen plasma activated by microwave energy to obtain the activated Ti3C2Tx at different temperatures ranging from 350 °C to 550 °C. The gas-sensing properties of raw Ti3C2Tx and Ti3C2Tx activated with oxygen microwave plasma were tested toward different volatile organic compounds gases. The results indicated that Ti3C2Tx activated at 500 °C exhibited excellent gas-sensing properties at room temperature (25 °C) to 100 ppm ethanol with a value of 22.47, which is attributed to the enhancement of the amount of oxygen functional groups and defects on the MXene Ti3C2Tx film, and in turn to lead to more oxygen molecules adsorption and desorption reaction in the active defect sites. The enhancement of ethanol-sensing performance demonstrated that the activated Ti3C2Tx possess great potential in gas sensing.  相似文献   

8.
The proliferation of electronic devices and wireless communication is leading to serious electromagnetic (EM) interference. In this work, Ti3C2/cement composites were developed as high efficiency EM functional materials by introducing exfoliated Ti3C2Tx MXene with cement for green buildings with EM shielding function. In the composites, few-layered Ti3C2 MXene were dispersed homogeneously throughout the cement matrix. The EM properties of the composites were studied as a function of the MXene content. With increasing MXene content, real and imaginary part of permittivity was significantly improved owing to the polarization and electrical conduction caused by the MXene phase. Composites with 15 wt.% MXene showed good EM absorbing properties with a maximum effective absorbing bandwidth of 2.67 GHz. Strong EM shielding can be achieved when MXene content increased to 25 wt.%. The EM shielding effectiveness of such composites was higher than 22.0 dB, and the dominating shielding mechanism was EM absorption. This work finds new materials for the development of advanced green buildings with EM shielding function.  相似文献   

9.
《Ceramics International》2022,48(3):3884-3894
Different kinds of two-dimensional hybrid electrodes have high theoretical capacitance and energy density. However, the origin of the electrochemical storage mechanism still remains elusive in alkaline, acid and neutral electrolytes. Herein, the interstratification-assembled Ti3C2Tx MXene/NiCo-LDHs electrodes were successfully prepared and studied in different electrolytes by in-situ Raman spectroscopy. The results show that H2O molecules in neutral electrolyte combine with –OH at the end of Ti3C2Tx MXene during charging, and debonding occurs during discharge. Similarly, this reaction also occurs in the discharge process with NiCo-LDHs and provides smaller pseudocapacitance characteristics. Although this pseudocapacitance reaction also occurs in acidic and alkaline electrolytes, however, the difference is that the hydrogen ions will promote the electrochemical performance of Ti3C2Tx MXene and has a certain corrosion consumption effect on NiCo-LDHs, but generally improve the electrochemical performance of Ti3C2Tx MXene/NiCo-LDHs. Interestingly, the OH? in alkaline electrolyte can promote the electrochemical performance of NiCo-LDHs, and produce a new electrochemical reaction with –F between the layers of Ti3C2Tx MXene, which greatly improves the overall electrochemical performance of this hybrid electrodes. As a result, Ti3C2Tx MXene/NiCo-LDHs electrodes have the best electrochemical performance in alkaline electrolyte with capacitance of 283 F g?1, energy density of 14.2 Wh kg?1 and power density of 3007.1 W kg?1. This work lays a foundation for the preparation of high-performance two-dimensional hybrid electrochemical energy storage devices.  相似文献   

10.
By combining the advantages of doping to change the electronic structure of molybdenum disulfide (MoS2), transition metal phosphides, and MXene, we proposed the idea of designing and preparing a new type of composite material, P-doped MoS2/Ni2P/Ti3C2Tx heterostructures (denoted as P@MNTC), to serve as the hydrogen evolution reaction (HER) catalyst of electrochemical water splitting. The as-prepared P@MNTC heterostructures show a significant HER activity with an overpotential of 120 mV at 10 mA cm–2 in alkaline electrolyte, with decreasing 105 and 125 mV compared with those of MoS2 and MXene, respectively. The density functional theory indicates that the P doping and synergy effect of Ti3C2Tx can enhance the activation of MoS2 and thus promote dissociation and absorption of H2O during HER process. This strategy provides a promising way to develop high-efficiency MoS2- and Ti3C2Tx-based composite catalysts for alkaline HER.  相似文献   

11.
MXenes, an emerging family of two-dimensional materials, were promising electrode materials due to their excellent electronic conductivity and hydrophilicity. MXenes exhibit extraordinary rate performance and cycling stability when serving as the anode materials for Li-ion batteries, but they have relatively low capacities. We thus prepared Ti3C2Tx/TiO2 composites using a simple route to coat TiO2 nanoparticles onto the delaminated few-layered MXenes, which functioned as spacers in the composite to suppress the restacking of MXene layers. The sample demonstrated excellent performance in the galvanostatic charge-discharge test, where a reversible capacity of 143?mA?h?g?1 could still be maintained after 200 cycles at 0.5?A?g?1 and a distinct plateau region could be clearly observed in the charge-discharge profiles. Density Theory Function calculation revealed that the hybridization of few-layered MXene was able to improve the structural stability of the composite during the insertion/de-insertion of Li atoms.  相似文献   

12.
《Ceramics International》2021,47(24):34437-34442
The development of semiconductor-based room-temperature methane (CH4) gas sensors is appealing but challenging. Herein, we report a CH4 gas sensor operating at room temperature based on Ti2CTx MXene, a novel p-type sensing material, achieving high-performance CH4 detection with visible light assistance. The Ti2CTx MXene based device showed more than seven-fold improvement for CH4 detection under visible-light irradiation, and the response/recovery times were also sharply decreased. The excellent CH4 sensing performance at room temperature could be attributed to the visible-light photocatalytic CH4 oxidation activity of the Ti2CTx sensing material. CH4 oxidation was revealed by photocatalytic measurement, O2-TPD and in-situ IR spectroscopies. The present work demonstrates the novel application of Ti2CTx MXene as a promising p-type sensing material for methane detection at room temperature. Moreover, the concept of “photocatalysis-enhanced gas sensing” can be employed in room-temperature gas sensors based on other novel semiconductors.  相似文献   

13.
Zhong  Cheng  Shang  Zhichao  Zhao  Caixian  Luo  He’an  Cao  Yi  Yan  Dejian  You  Kuiyi 《Topics in Catalysis》2023,66(1-4):12-21

In order to obtain a high photoelectrochemical performance, co-catalysts loading is the most commonly used way, which can facilitate reactions and suppress the charge recombination. In this paper, a novel composite of ZnO/Ti3C2TX photoanode was fabricated by a facile spin coating of precipitating Ti3C2TX (MXene) flakes onto the surface of ZnO, as co-catalyst for enhanced photoelectrochemical (PEC) water splitting. Under simulated sunlight, the optimum composite of ZnO/Ti3C2TX photoanode showed the photocurrent density as 1.2 mA cm?2 at 1.23 VRHE, which is 1.4 times higher than that of pristine ZnO without Ti3C2TX co-catalyst (0.83 mA cm?2 at 1.23 VRHE). The ZnO/Ti3C2TX photoanode showed a photoconversion efficiency of 0.32% and maintained a stable photocurrent over 2000s. The Ti3C2TX (MXene) flakes as co-catalyst to promote the charge transfer and accelerates the reaction kinetics in ZnO/Ti3C2TX photoanode. This work delivers a two-dimensional (2D) material Ti3C2TX (MXene) as co-catalyst for enhanced ZnO photoanode PEC water splitting.

  相似文献   

14.
Due to the expansion of human production activities, toxic ammonia (NH3) is excessively released into the atmosphere, being a huge threat to human health and the natural environment. Therefore, it is of great significance to design an easy-synthesized gas-sensing material with both good room temperature sensitivity and selectivity for trace-level NH3 detection. Herein, we fabricate a chemiresistive NH3 gas sensor with enhanced performance based on Ni(OH)2/Ti3C2Tx hybrid materials. The Ni(OH)2/Ti3C2Tx hybrid materials are synthesized by an in-situ electrostatic self-assembly method. Attributed to the formation of interfacial heterojunctions and the modulation of carrier density, the Ni(OH)2/Ti3C2Tx hybrid sensor exhibits high response, outstanding repeatability, good selectivity and stability in low concentrations of NH3. Moreover, the Ni(OH)2/Ti3C2Tx hybrid sensor has a higher response to 10 ppm NH3 at the relative humidity of 40% and 60%, which makes it promising for applications in real complex environments with high humidity. Benefitting from the low power consumption and easy fabrication process, the Ni(OH)2/Ti3C2Tx hybrid sensor possesses a broad application prospect in the internet of things (IoT) environmental monitoring.  相似文献   

15.
《Ceramics International》2022,48(21):31129-31137
In this study, a lightweight and robust Ti3C2Tx/carbon nanotubes (CNTs) foam (TCF) was fabricated using HCl-induced self-assembly, followed by vacuum freeze-drying. The electrical conductivity and mechanical elasticity of the TCF was higher than those of monolithic Ti3C2Tx foams. This was ascribed to the incorporation of CNTs into Ti3C2Tx preventing the stacking of the Ti3C2Tx nanosheets and producing a well-developed three-dimensional honeycomb-like porous network structure, which considerably improved impedance matching, promoted multiple reflection loss, increased conduction loss and polarisation loss, thus imparting remarkable microwave absorption properties to the TCF. The 1.72 and 1.92 mm thick TCF samples with absorber loadings of 4 wt%, which were obtained by immersing TCF into molten paraffin, followed by cutting it into coaxial rings, presented an optimum reflection loss of ?48.8 dB and a maximum effective absorption bandwidth (EAB) of 5.44 GHz, respectively. Moreover, upon increasing the thickness of the TCF samples from 1.52 to 4.92 mm, the EAB could be regulated from 4.16 to 18 GHz, respectively. In this study, we developed a facile method for fabricating a lightweight and robust TCF, which met the ‘light, thin, broad, and strong’ criteria and presented a broad EAB and remarkable dissipation capability, for microwave absorption materials.  相似文献   

16.
《Ceramics International》2022,48(22):33412-33417
Ti3C2Tx MXene has attracted extensive attention in the field of electromagnetic (EM) protection over recent years. Multilayer Ti3C2Tx (M-Ti3C2Tx), as an intermediate product of MXene ultra-thin structure, has potential advantages in the field of EM protection. Herein, the M-Ti3C2Tx was obtained by HCl/LiF etching Ti3AlC2. The microwave absorption (MA) and electromagnetic interference (EMI) shielding performance of Ti3AlC2 and M-Ti3C2Tx were compared. The mechanism research of MA and EMI shielding indicates that the construction of local conductive network plays a leading role in the EM wave attenuation. The sample with 30% M-Ti3C2Tx display RLmin of ?50.26 dB, and corresponding bandwidth of 4.64 GHz at the thickness of 1.7 mm. Especially, the metastructure based on the EM parameters of M-Ti3C2Tx/wax exhibits ultra-wide bandwidth (15.54 GHz). Our research will provide a basis for the design of MXene-based EM protection performance.  相似文献   

17.
《Ceramics International》2021,47(18):25531-25540
Ti3C2Tx exhibits excellent electromagnetic (EM) shielding and electrochemical properties. However, the inherent re-stacking tendency and easy oxidation of Ti3C2Tx limit its further application. In this study, a multi-walled carbon nanotube/polyaniline composite (CNT/PANI, denoted as C–P) was introduced into Ti3C2Tx nanosheets to obtain a Ti3C2Tx–CNT/PANI composite (T@CP). Owing to the integrated effects of Ti3C2Tx and C–P, the contribution of absorption was significantly improved, which finally enhanced the EM shielding performance of T@CP. The highest total EM shielding effectiveness (SET) was close to 50 dB (49.8 dB), which was substantially higher than that of pure Ti3C2Tx (45.3 dB). Moreover, T@CP demonstrated outstanding supercapacitive performance. The specific capacitance of T@CP (2134.5 mF/cm2 at 2 mV/s) was considerably higher than that of pure Ti3C2Tx (414.3 mF/cm2 at 2 mV/s). These findings provide a new route for the development of high-efficiency Ti3C2Tx-based bifunctional EM shielding and electrochemical materials.  相似文献   

18.
《Ceramics International》2020,46(12):20088-20096
In this work, TiO2/MXene composites were successfully synthesized through an in-situ solvothermal method, where the morphology of TiO2 nanoparticles (NPs) was modified by different concentrations of agents. Ti3C2Tx with electronic storage characteristics was employed as a co-catalyst to enhance the photocatalytic degradation activity by capturing photogenerated electrons. The experimental results reveal that, with the help of C3H8O agents, TiO2 NPs are uniformly distributed on the surface of Ti3C2Tx. The TiO2/Ti3C2Tx-C3H8O composite showed the highest photocatalytic activity of 90.5% after 75 min under mercury light irradiation, which is 57.9% higher than that of the pure TiO2 photocatalyst. The photocatalytic activity is promoted due to the high photoelectron transmission performance of the TiO2/Ti3C2Tx composites.  相似文献   

19.
《Ceramics International》2021,47(21):29995-30004
Novel and highly effective electromagnetic interference (EMI) shielding materials are desirable to attenuate unwanted electromagnetic radiation or interference produced by electrical communication devices. Here, functional Ti3C2Tx@Ni particles with a core@shell and sandwich like structure were fabricated using the facile electroless plating technique. The core@shell structured Ti3C2Tx@Ni consists of a Ti3C2Tx core and a Ni shell. In the core, thin Ni layers are sandwiched in between Ti3C2Tx flakes. EMI shielding effectiveness (SE) values of Ti3C2Tx@Ni/wax composites increased with increasing Ti3C2Tx@Ni content. The average EMI SE value of 60 wt% Ti3C2Tx@Ni/wax composite was 43.12 dB, increased by 73% as compared with 24.93 dB for the same content of pristine Ti3C2Tx in wax in the frequency range 2–18 GHz. An average EMI SE of 74.14 dB was achieved in the 80 wt% Ti3C2Tx@Ni/wax. The enhanced EMI shielding performance should be ascribed to the synergic effect of the absorption loss of the Ti3C2Tx core and the magnetic loss of the Ni shell and the inner Ni layers.  相似文献   

20.
《Ceramics International》2022,48(11):15721-15728
Developing a new strategy to effectively prevent the restacking of MXene nanosheets will have significant impacts on designing flexible supercapacitor electrodes. Herein, a novel Ti3C2Tx/polyvinyl alcohol (PVA) porous sponge with 3D interconnected structures is prepared by sol-gel and freeze-dried methods. This Ti3C2Tx/PVA porous sponge is used as the template of in-situ polyaniline (PANI) polymerization, and the fabricated PANI@Ti3C2Tx/PVA hydrogel composite is applied as flexible supercapacitors electrodes. 1D conductive polymer chains PVA could increase the interlayer spacing of Ti3C2Tx nanosheets, which is beneficial to expose more electrochemical active sites. The supercapacitor based on PANI@Ti3C2Tx/PVA hydrogel composite exhibits the coexistence of double-layer capacitance and pseudocapacitance behavior. This supercapacitor shows a maximum areal specific capacitance of 103.8 mF cm?2 at 2 A m?2, and it also exhibits a maximum energy density of 9.2 μWh·cm?2 and an optimum power density of 800 μW cm?2. The capacitance of this supercapacitor is almost not change under different bending angles. Moreover, 99% capacitance retention is achieved after 10 000 charge/discharge cycles of the supercapacitor. The synergistic effect between PANI and Ti3C2Tx/PVA composite may improve the number of reactive sites and provide efficient channels for ion diffusion/electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号