首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a novel high-entropy n-type thermoelectric material Sr0.9La0.1(Zr0.25Sn0.25Ti0.25Hf0.25)O3 with pure perovskite phase was prepared using a conventional solid state processing route. The results of TEM and XPS show that various types of crystal defects and lattice distortions, such as oxygen vacancies, edge dislocations, in-phase rotations of octahedron and antiparallel cation displacements coexist in this high-entropy ceramic. At 873 K, the high-entropy ceramics showed both a low thermal conductivity (1.89 W/m/K) and a high Seebeck coefficient (393 μV/K). This work highlights a way to obtain high-performance perovskite-type oxide thermoelectric materials through high-entropy composition design.  相似文献   

2.
A new high-entropy diboride (Hf0.25Zr0.25Ta0.25Sc0.25)B2 was designed to investigate the effect of introducing rare-earth metal diboride ScB2 into high-entropy diborides on its structure and properties. The local mixing enthalpy predicts that (Hf0.25Zr0.25Ta0.25Sc0.25)B2 has high enthalpy driving force, which more easily allows the formation of single-phase AlB2-type structures between components. The experiments further demonstrate that (Hf0.25Zr0.25Ta0.25Sc0.25)B2 possesses excellent phase stability, lattice integrity and nanoscale chemical homogeneity. (Hf0.25Zr0.25Ta0.25Sc0.25)B2 showed relatively high hardness (30.7 GPa), elastic modulus (E, G, and B of 522, 231 and 233 GPa, respectively), bending strength (454 MPa), and low thermal conductivity (13.9 W·m?1·K?1). The thermal expansion of (Hf0.25Zr0.25Ta0.25Sc0.25)B2 is higher than that of ZrB2 and HfB2 due to weakened bonding (M d - B p and M dd bonding) and enhanced anharmonic effects. Thus, incorporating Sc into high-entropy diborides can tailor the properties associated with the bonding, which further expands the compositional space of high-entropy diborides.  相似文献   

3.
《Ceramics International》2023,49(7):10525-10534
Thermal barrier coatings are an effective technology for improving the high-temperature performance of hot section components in gas turbine engine. Due to their excellent properties, high-entropy oxides are considered to be promising materials for thermal barrier coatings. Laser cladding is a coating preparation technology and the top coat prepared by laser cladding technology has an important application value for thermal barrier coatings. In this work, to improve the thermal cycling behavior of the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide coating, a bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide layer and the YSZ layer was designed and fabricated by laser cladding on the NiCoCrAlY alloy surface. The microstructure, phase and mechanical properties of the coating were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and micro-hardness and nanoindentation tests, respectively. The results show that a bi-layer La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7/YSZ coating was successfully prepared by the laser cladding method, and shows good bonding at the interface between the layers. The high-entropy oxide layer maintains a relatively stable defective fluorite structure and its microstructure exists in the stable cellular and dendrite crystalline state after laser cladding. The high-entropy oxide layer prepared by laser cladding showed an average elastic modulus of 167 GPa and an average hardness of 1022.8HV in nanoindentation tests. Thermal cycling of the coating was carried out at 1050 °C. Failure of the bi-layer coating occurred after 60 thermal cycles at 1050 °C. Thermal stresses between different layers are calculated during thermal cycling. Due to its excellent mechanical properties, the bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide and YSZ layers is expected to become an effective high-entropy oxide thermal barrier coating.  相似文献   

4.
A series of 0.75Ba(1?x)La2x/3TiO3-0.25Bi(Mg0.5Ti0.5)O3 (x = 0–0.2) ceramics have been synthesized by doping La2O3 into 0.75BaTiO3-0.25Bi(Mg0.5Ti0.5)O3 (0.75BT-0.25BMT), and their structure and dielectric properties investigated. Upon characterizing the structural properties, the single-phase perovskite structure is identified for all the samples and the long-range order of 0.75BT-0.25BMT is verified to be further destroyed with the addition of La2O3. Moreover, it is found that the density of 0.75BT-0.25BMT can be improved by doping with La2O3, which also promotes the grain growth. Regarding the dielectric properties, the peak shifting effect induced by La3+ improves the permittivity-temperature stability of 0.75BT-0.25BMT remarkably by strengthening its relaxation behavior. Among all the samples, 0.75Ba0.8La0.4/3TiO3-0.25Bi(Mg0.5Ti0.5)O3 shows the most outstanding permittivity-temperature stability with εr = 572 ± 15% (compared with εr at 25 °C) over the temperature range ?70°C–238 °C at 1 kHz, which is notably better than that of 0.75BT-0.25BMT (?4°C–58 °C) and satisfies the specification of the X9R multilayer ceramic capacitor (MLCC). Our work provides one promising option for selecting an alternative dielectric material in terms of permittivity-temperature stability, which advances the development of the X9R MLCC.  相似文献   

5.
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

6.
In this study, a high-entropy perovskite oxide Sr(Zr0.2Sn0.2Hf0.2Ti0.2Nb0.2)O3 (SZSHTN) was first introduced to Na0.5Bi0.5TiO3 (NBT) lead-free ferroelectric ceramics to boost both the high-temperature dielectric stability and energy storage performance. Excellent comprehensive performance was simultaneously obtained in the 0.8NBT–0.2SZSHTN ceramic with high ε′ value (> 2000), wide ε′-temperature stable range (TCC < 5%, 52.4–362°C), low tanδ value in a wide range (<0.01, 90–341°C) and high energy storage performance (Wrec = 3.52 J/cm3, Wrec and η varies ±6.08% and ±7.4% from 20 to 150°C), which endows it the promising potential to be used in high-temperature environments.  相似文献   

7.
Novel non-equimolar high-entropy SrLa(Al0.25Zn0.125Mg0.125Ti0.25Ga0.25)O4 (SLAZMTG) ceramics with a layered perovskite structure have been prepared via the standard solid-state reaction method. The high-entropy composition belongs to the tetrahedral structure with a space group of I4/mmm, which is confirmed by the XRD and TEM analyses. Excellent microwave dielectric properties with a suitable dielectric constant (εr = 22.5), high quality factor (Qf = 83,003 GHz), and near-zero τf value of −1.7 ppm/°C are obtained in SLAZMTG ceramics sintered at 1400 °C. Meanwhile, a significant enhancement in compressive strength was achieved due to the improvement of configuration entropy, 912 MPa for SLAZMTG compared to 578 MPa in the pure SrLaAlO4 composition. Additionally, the high-entropy engineering in the present work suggests great potential in achieving low thermal conductivities. SLAZMTG ceramics exhibit low thermal conductivities ranging from 2.86 W/m•K at 323 K to 1.99 W/m•K at 673 K, much lower than those of SrLaAlO4 and other perovskite ceramics.  相似文献   

8.
《Ceramics International》2023,49(13):21546-21554
A series of high entropy oxides (HEOSs) with non-isomolar ratios of perovskite structures were prepared by ball milling a mixture of SrO, TiO2, ZrO2, ZnO, SnO2 and HfO2 followed by sintering using a high-temperature solid-phase method. Both XRD and TG-DSC results indicate that single-phase Sr(Ti0.2Zr0.2Zn0.2Sn0.2Hf0.2)O3-σ is formed at 1500 °C. According to the SEM-EDS pictures, the elements in the oxide are uniformly distributed with no significant segregation or accumulation. The TEM results show that the polycrystalline ceramic powders can be classified as orthogonal Pbnm perovskite structure. The electrical conductivity (σ) was measured by the EIS technique and the activation energy (Ea) of HEOSs is calculated. In the temperature range of 300–750 °C, Sr(Ti0.28Zr0.18Zn0.18 Sn0.18 Hf0.18)O3-σ exhibits the highest conductivity (2.41 × 10−3 S/cm) and the lowest activation energy (Ea = 0.57 eV) due to lattice distortion and oxygen vacancy concentration.  相似文献   

9.
《Ceramics International》2022,48(9):12608-12624
High-entropy ceramics, a novel type of multicomponent materials with broad application prospects, have stirred up world-wide interests for over a decade. In the current work, in-situ high-entropy (Hf0.25Zr0.25Ti0.25Cr0.25)B2 ceramic modified SiC–Si (HETMB2-SiC-Si) coating was deposited on carbon/carbon (C/C) composites via gaseous reactive infiltration of Si assisted slurry painting (GRSI-SP) method, to improve the oxidation protective ability of C/C composites at 1973 K. The formation and oxidation mechanisms of the coating was explored by first-principles simulation, experiment and thermodynamic analyses. The coating prepared at 2373 K shows dense mosaic structure filled with HETMB2-rich Si-based multiphase. This coating adheres well with the C/C substrate, which is ascribed to the formed zigzagged SiC–Si transition layer. This coating protected C/Cs from oxidation for more than 205 h at 1973 K. The enhanced oxidation protective ability is mostly ascribed to the subsequently generated compact and stable Hf-Zr-Ti-Cr-Si-O composite oxidation scale. This research will start up novel research ares of developing high-entropy materials modified coatings with improved protective ability under extreme environments.  相似文献   

10.
《Ceramics International》2022,48(24):36136-36139
In this work, a perovskite-structured sodium ion conductor, Na0.25La0.25NbO3 (NLNO) was developed from analogous Li0.25La0.25NbO3 ceramic. NLNO ceramic was successfully synthesized by solid state reaction. The sodium ionic conduction in Na0.25La0.25NbO3 ceramic was studied and the effect of sintering temperature on the microstructure, phase structure, density and sodium ionic conductivity for Na0.25La0.25NbO3 was also discussed. Single phase of perovskite was successfully obtained from NLNO sintered at 1200 °C and 1250 °C, and the result shows high sintering temperature leads to a large grain size, large lattice parameters and high density. With an increase of sintering temperature from 1150 °C to 1250 °C, the conductivity of samples increases gradually. NLNO sintered at 1250 °C presents a high sodium ionic conductivity of 1.06 × 10?5 S cm?1 at 30 °C, which is much higher than that of electronic conductivity in NLNO sintered at 1250 °C.  相似文献   

11.
《Ceramics International》2022,48(24):36084-36090
The high-entropy ceramic materials (Zr0.25Ce0.25Hf0.25Y0.25)O1.875 (H-0) and (Zr0.2Ce0.2Hf0.2Y0.2RE0.2)O1.8 (H-RE) (RE = La, Nd and Sm) with fluorite structure and homogeneous element distribution were prepared. With fluorite structure, fine grain size and high density, the H-0 and H-RE ceramics displayed low thermal conductivity, suitable thermal expansion coefficient, high hardness and fracture toughness. The effect of La, Nd and Sm on the mechanical, heat conductivity and heat expansion properties of high entropy ceramics were discussed. The single-phase high-entropy ceramic materials in this work are very suitable for application as thermal barrier materials.  相似文献   

12.
《Ceramics International》2021,47(21):30129-30136
We have prepared (Sr1-xMgx)(Sn0.5Ti0.5)O3, (X = 0.00, 0.25, 0.50, 0.75) samples by the solid state reaction method and studied the structural, optical, electrical modulus and the other dielectric properties of the samples with respect to variation in frequencies (1 × 109 to 2 × 109 Hz) using Impedance Analyzer. This study suggests that the XRD patterns of the samples have shown that this possesses cubic perovskite structure in space group Pm-3m and scanning electron microscope was used to analyze the grain size distribution and porosity of the ceramic. The dielectric properties of these materials were strongly dependent upon on concentration X as well as amount of frequencies. The existence of metal oxygen bonds of Sr–Ti–O was verified by Fourier Transform Infra Red (FTIR) spectrum at 540 cm−1. The highest PL intensity of 716.38 that exhibits the green emission (508.5 nm) was obtained for the composition of (Sr0.25Mg0.75)(Sn0.5Ti0.5)O3. AC conductivity slowly decreases with increasing Mg substitution and also the sample (Sr0.25Mg0.75)(Sn0.5Ti0.5)O3 having the lowest (constant) value of conductivity at 1 GHz–2GHz.  相似文献   

13.
《Ceramics International》2020,46(17):26581-26589
High-entropy metal boron carbonitride ceramic powders including (Ta0.2Nb0.2Zr0.2Hf0.2W0.2)BCN, (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)BCN, and (Ta0.2Nb0.2Zr0.2Ti0.2W0.2)BCN, were successfully synthesized via mechanical alloying at room temperature. Results show that for the first step of 10 h milling, the amorphous BCN phases are observed. After 24 h of second step milling, the as-synthesized high-entropy ceramics exhibit a single face-centered cubic solid solution structure with high compositional uniformity from nano-scale to micron-scale. When heated to 1500 °C for 30min in flowing Ar, the as-prepared high-entropy ceramic powders still show relatively high thermal stability; however, some metals oxides like HfO2 and ZrO2 are detected due to the pre-existing oxides on sample surfaces. After heat treatment, some amorphous phases are still retained. This work suggests a new processing route on the synthesis of high-entropy metal boron carbonitride ceramics.  相似文献   

14.
《Ceramics International》2023,49(2):2167-2173
A multicomponent porous MAX phase (Ti0.25Zr0.25Nb0.25Ta0.25)2AlC has been successfully synthesized by using pressureless sintering of mixed elemental powders. The microstructure and phase composition of the samples sintered at various temperatures have been characterized by using SEM, XRD, EDS and other analyses, from which conclusions regarding the reaction and pore forming processes could be drawn. During the whole sintering process, the pores did mainly arise from the diffusion related reactions between Al and other elements at low temperatures (below 1200 °C), and the formation reaction of the MAX phase took place at higher temperatures (above 1200 °C). An exception is the clearance holes that were left from the pressing. The optimum sintering temperature for the final MAX phase (Ti0.25Zr0.25Nb0.25Ta0.25)2AlC was 1600 °C. A too high sintering temperature (1700 °C) caused a serious loss of Al atoms and a decomposition of the synthesized MAX phase.  相似文献   

15.
A nano dual-phase powder with great sinterability was synthesized by molten-salt assisted borothermal reductions at 1100 °C using B, ZrO2, HfO2, Ta2O5, Nb2O5 and TiO2 powders as raw materials. Single-phase (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy ceramic was prepared by spark plasma sintering using the as-synthesized nano dual-phase powder. Oxidation behavior of the (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic was investigated over the range of 30–1400 °C in air and the result indicated that the rapid oxidation of ceramic began at 1300 °C. The phenomenon could be ascribed to the rapid volatilization of B2O3 from oxide scale. A layered structure was formed at the cross section of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic after oxidation. The relationship between partial pressures of gaseous metal oxides and oxygen partial pressures was calculated, which inferred that the formation of layered structure could be ascribed to the active oxidation of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2, the generation of gaseous metal oxides, their outward diffusion and further oxidation.  相似文献   

16.
Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C (HTZTNC) was investigated over temperature range of 1400–1600 °C. Results showed improved oxidation resistance of high-entropy carbide compared with individual carbide ceramics. In oxide layer, Ta2O5 and Nb2O5 were found to be dominant phases at 1400 °C, whereas ZrTiO4 and HfTiO4 were main phases obtained at 1500 and 1600 °C. Moreover, these complex dense oxide layer structures on the surface of HTZTNC at high temperature led to excellent oxidation resistance. The observation of Ti-depleted layer at 1500 and 1600 °C after 20 min of oxidation indicated that oxidation mechanism involved outward diffusion of titanium oxide, which was further confirmed by reoxidation experiments. In sum, these findings are promising for future development of high-entropy ultrahigh temperature ceramics with good oxidation resistance.  相似文献   

17.
Dielectric and impedance spectroscopies were employed to study the electrical behavior of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (abbr. BCTZ) lead‐free ceramic. The dielectric properties versus dc bias electric field experiment revealed high dielectric tunability (> 65%) as well as figure of merit (> 27) at 10 kHz and room temperature. At elevated temperature range, a dielectric loss peak was observed and verified to be correlate of oxygen vacancy relaxation. The impedance spectra studies indicate that the ceramic is a mixed ionic conductor of p‐type nature at the paraelectric phase and, the grain and total conductivity at 600°C reaches 6.0 × 10?5 and 2.0 × 10?5 S/cm, respectively.  相似文献   

18.
A2B2O7-type oxides with low thermal conductivities are potential candidates for next-generation thermal barrier coatings. The formation of high-entropy ceramics is considered as a newly effective way to further lower their thermal conductivities. High-entropy Y2(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)2O7 (5HEO) and Y2(Ti0.25Zr 0.25Hf0.25Ta0.25)2O7 (4HEO) ceramics were prepared by in situ solid reaction sintering, considering the important roles of B-site cations on thermal conductivities of the A2B2O7-type oxides. Reaction process, phase structures, microstructures, and thermal conductivities of the as-sintered ceramics were investigated. Lattice distortion effects on their thermal conductivities were also discussed by using the proposed criterion based on the supercell volume difference of the individual compounds. Near fully-dense 5HEO and 4HEO ceramics were obtained after being sintered at 1600°C. The former one had a dual-phase structure containing high-entropy Y2(Ti0.227Zr0.227Hf0.227Nb0.136Ta0.182)2O7.318 pyrochlore oxide (5HEO-P) and Y(Nb, Ta)O4 solid solution, while the latter one was a single-phase pyrochlore oxide (4HEO-P) with homogeneous element distribution. The formed 5HEO-P oxide has larger lattice distortion than 4HEO-P oxide due to the larger total amounts of Nb and Ta cations at B sites in the 5HEO-P oxide. It results in lower thermal conductivity of 5HEO ceramics (keeping at 1.8 W·m–1·K–1) than those of 4HEO ceramics (ranging from 1.8 to 2.5 W·m–1·K–1) at temperatures from 25°C to 1400°C. Their glass-like thermal conductivities were determined by the selection of B site cations and high-entropy effects. These results provide some useful information for the material design of novel thermal barrier coating materials.  相似文献   

19.
《Ceramics International》2020,46(6):7430-7437
A series of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 (Me=Y3+,Nb5+,Ta5+,V5+,Mo6+,W6+) perovskite oxides were synthesized by using a solid state reaction method. Three multiple-cation solid solutions formed pure phase compounds, and only two compounds were sintered into ceramics. Microstructure analysis showed the influence of configurational entropy on phase stability and grain growth. Dielectric measurements showed that the high entropy ceramics possessed decent temperature stability of permittivity from 25 °C to 200 °C, low dielectric loss (<0.002) from 20 Hz to 2 MHz, high resistance and moderate breakdown strength (290 kV/cm, 370 kV/cm). Evidence strongly confirmed that controlling configurational entropy could be a feasible perspective to set up highly tunable perovskite structures and explore novel species of dielectric materials.  相似文献   

20.
《Ceramics International》2022,48(7):9602-9609
The (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 (x = 0–0.5) high-entropy ceramics were successfully prepared by a solid state reaction method and their structures and thermo-physical properties were investigated. It was found that the high-entropy ceramics demonstrate pure pyrochlore phase with the composition of x = 0.1–0.5, while (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 shows the defective fluorite structure. The sintered high-entropy ceramics are dense and the grain boundaries are clean. The grain size of high-entropy ceramics increases with the Ti4+ content. The average thermal expansion coefficients of the (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics range from 10.65 × 10?6 K?1 to 10.84 × 10?6 K?1. Importantly, the substitution of Zr4+ with Ti4+ resulted in a remarkable decrease in thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics. It reduced from 1.66 W m?1 K?1 to 1.20 W m?1 K?1, which should be ascribed to the synergistic effects of mass disorder, size disorder, mixed configuration entropy value and rattlers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号