首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(20):28218-28225
Si3N4–SiC/SiO2 composites were prepared by employing three-dimensional (3D) printing using selective laser sintering (SLS) and infiltration processing. The process was based on the infiltration of silica sol into porous SLS parts, and silicon carbide and silicon nitride particles were bonded by melted nano-sized silica particles. To optimize the manufacturing process, the phase compositions, microstructures, porosities, and flexural strengths of the Si3N4–SiC/SiO2 composites prepared at different heat-treatment temperatures and infiltration times were compared. Furthermore, the effects of the SiC mass fraction and the addition of Al2O3 and mullite fibers on the properties of the Si3N4–SiC/SiO2 composites were investigated. After repeated infiltration and heat treatment, the flexural strength of the 3D-printed Si3N4–SiC/SiO2 composite increased significantly to 76.48 MPa. Thus, a Si3N4–SiC/SiO2 composite part with a complex structure was successfully manufactured by SLS and infiltration processes.  相似文献   

2.
SiC/SiC composites prepared by liquid silicon infiltration (LSI) have the advantages of high densification, matrix cracking stress and ultimate tensile strength, but the toughness is usually insufficient. Relieving the residual microstress in fiber and interphase, dissipating crack propagation energy, and improving the crystallization degree of interphase can effectively increase the toughness of the composites. In this work, a special SiC particles and C (SiCP +C) double-cladding layer is designed and prepared via the infiltration of SiCP slurry and chemical vapor infiltration (CVI) of C in the porous SiC/SiC composites prepared by CVI. After LSI, the SiC generated by the reaction of C with molten Si combines with the SiCP to form a layered structure matrix, which can effectually relieve residual microstress in fiber and interphase and dissipate crack propagation energy. The crystallization degree of BN interphase is increased under the effects of C-Si reaction exotherm. The as-received SiC/SiC composites possess a density of 2.64 g/cm3 and a porosity of 6.1%. The flexural strength of the SiC/SiC composites with layered structure matrix and highly crystalline BN interphase is 577 MPa, and the fracture toughness reaches up to 37 MPa·m1/2. The microstructure and properties of four groups of SiC/SiC composites prepared by different processes are also investigated and compared to demonstrate the effectiveness of the SiCP +C double-cladding layer design, which offers a strategy for developing the SiC/SiC composites with high performance.  相似文献   

3.
Non-oxide ceramic matrix composites (CMC) based on SiC fibers with SiC matrix were fabricated by polymer infiltration and pyrolysis (PIP) and characterized regarding their microstructural features and their mechanical properties. The fiber preform was made using winding technology. During the winding process, the SiC fiber roving was impregnated by a slurry containing SiC powder and sintering additives (Y2O3, Al2O3 and SiO2). This already helped to achieve a partial matrix formation during the preform fabrication. In this way, the number of PIP cycles to achieve composites with less than 10% open porosity could be reduced significantly. Additionally, damage-tolerant properties of the composites were obtained by an optimal design of the matrix properties although only uncoated fibers were used. Finally, composites with a strength level of about 500 MPa and a damage-tolerant fracture behavior with about 0.4% strain to failure were obtained.  相似文献   

4.
Silicon carbide is one of the most important high-performance engineering ceramics. However, SiC ceramics with complex structure and high mechanical performance are difficult to shape, sinter, and process. Additive manufacturing is expected to solve the above problems, but the photosensitive slurry with low solid content leads to high residual Si content and low strength of final components. Here, we presented one novel strategy to prepare high-strength SiC components with complex structure by introducing quasi-spherical diamond powder as the high-density carbon source through vat photopolymerization 3D printing technology and reactive melt infiltration process. The final RB–SiC ceramics exhibited a specific flexural strength of 312.45 ± 18.75 MPa and elastic modulus of 359.16 ± 4.57 GPa, demonstrating one of the highest flexural strength and elastic modules among those reported for 3D-printed SiC composites. Owing to the high mechanical performance and simple fabrication process, this strategy has significant advantages in the manufacturing of structural SiC ceramics.  相似文献   

5.
In this study, we present a novel preparation process named vacuum-assisted slurry infiltration (VASI) for obtaining the SiO2 f/SiO2 composites. This method displays remarkably improvement in manufacturing cycles since it allows adopt the ceramic slurries with high solid content as well as low viscosity. Through the porous matrix design of combining coarse particles with fine particles, a homogeneous porous matrix is achieved. The SiO2 f/SiO2 composites prepared by the VASI method exhibit the rivaling flexural and tensile strength at 48.8 and 16.4 MPa, respectively. Meanwhile, such porous matrix can enable cracks deflecting and dissipating crack energy by fiber pullout and fiber debonding mechanisms. In comparison, composites fabricated via silica sol infiltration show lower mechanical properties and brittle fracture behavior due to the formation of some defects in the matrix. This work make the prospect for meeting the requirements of low-cost, short preparation cycles, and near-net-shape manufacturing technology for SiO2 f/SiO2 composites becomes realizable.  相似文献   

6.
《Ceramics International》2022,48(20):30332-30337
Stereolithography is a popular three-dimensional (3D) printing technology, which is widely used for manufacturing ceramic components owing to its high efficiency and precision. However, it is a big challenge to prepare SiC ceramic slurry with high solid content for stereolithography due to the strong light absorption and high refractive index of dark SiC powders. Here, we propose a novel strategy to develop photosensitive SiO2/SiC ceramic slurry with high solid content of 50–65 vol% by adding spherical silica with low light absorbance and applying a stacking flow model to improve the solid content of the slurry. The as-prepared slurry exhibits excellent stereolithography properties with a dynamic viscosity lower than 20 Pa s and curing thickness more than 120 μm. Therefore, it can be successfully applied for stereolithography-based additive manufacturing of SiC green bodies with large size (100 mm), sub-millimeter accuracy (0.2 mm), and complex structure. The stacking flow model also shows immense potential for the stereolithography of other dark-color ceramics with high solid content.  相似文献   

7.
In this study, the SiC/SiC-SiYC composites were fabricated via chemical vapor infiltration (CVI) combined with the reactive melt infiltration (RMI) process. The excellent infiltration of Si-Y alloy assisted in fabricating composites with a density of 2.94 g/cm3 and a porosity of only 2.0%. After 20 h of corrosion at 1300 °C in the water-oxygen environment, the generated oxide layer, consisting of a glass layer and a diffusion layer, effectively protected the composites, and the flexural strength retention is 114.2%. This study highlights the significant potential of Si-Y alloy as a modification phase that is resistant to water and oxygen. It also presents a novel approach for developing high-density ceramic matrix composites that are resistant to water-oxygen corrosion.  相似文献   

8.
《Ceramics International》2023,49(1):392-402
Silicon carbide ceramic matrix composites are widely used in aerospace field due to their advantages of high temperature resistance, high strength and corrosion resistance. However, its application is greatly limited because of the difficulty in preparing complex shape structures by traditional machining methods. Here, a new strategy for preparing SiCw/SiC complex structure by combining direct ink writing with reaction bonding is proposed. A water-based slurry consisting of silicon carbide, carbon powder and silicon carbide whisker was developed. The influence laws of C content and SiCw content in slurry on sintering properties of direct-written samples were studied. The reaction bonding mechanism and whisker reinforcing and toughening mechanism were analyzed by means of microstructure and phase composition. The results show that the slurry exhibits shear thinning behavior with stress yield point, and its flow behavior and plasticity meet the requirements of direct writing. When the carbon content is 6.4 wt%, the maximum flexural strength is 239.3 MPa. When 15 wt% SiCw was added, the flexural strength of the composite reached 301.6 MPa, and when 20 wt% SiCw was added, the fracture toughness of the composite reached 4.02 MPa m1/2, which was increased by 26% and 18% compared with single-phase SiC, respectively. The reinforcing and toughening mechanisms of the whiskers mainly include whisker pullout, crack deflection and whisker bridging. After direct ink writing and reaction bonded, the whole process shows good near net forming ability. 3D printed SiCw/SiC composites have great application prospects in aerospace field.  相似文献   

9.
《Ceramics International》2021,47(23):32891-32899
Herein, we investigate the applicability of the polycarbosilane (PCS)–metal slurry reactive melt infiltration (RMI) process to various metals. The slurry exhibiting the best ceramized ability was used to examine the relationship between the ceramic thickness and reactive time, ceramic thickness and reactive temperature, and infiltration depth and slurry-coating thickness. The results show that the thickness of the ceramic layer increases with reactive time and temperature and the infiltration depth increases with the coating thickness. PCS–Si90Zr10 slurry RMI was selected to modify cylindrical nozzle C/C preforms, and dense C/C–SiC–ZrC composites with a density of ~2.05 g cm−3 were obtained. Owing to the good control of the PCS–Si90Zr10 slurry RMI on the interface, matrix, and carbon fiber of the as-received cylindrical composites, the bending strength of the C/C–SiC–ZrC composites was as high as 306.4 MPa, which is considerably higher than that of a C/C preforms (70.4 MPa). Considering the ablation resistance, the mass and linear ablation rates of the C/C–SiC–ZrC composite (~0.29 mg s−1 and ~2.48 × 10−3 mm s−1, respectively) were similar to those of the composites prepared using traditional RMI (~0.23 mg s−1 and ~2.29 × 10−3 mm s−1). The proposed polymer–metal RMI is more suitable for the modification of C/C preforms with thin-wall structures owing to its advantages including precise control of infiltration dose and flexible operation of slurry coating. Furthermore, it is suitable for the local modification of C/C components.  相似文献   

10.
In order to improve the oxidation and thermal shock resistance of 2D C/SiC composites, dense SiB4–SiC matrix was in situ formed in 2D C/SiC composites by a joint process of slurry infiltration and liquid silicon infiltration. The synthesis mechanism of SiB4 was investigated by analyzing the reaction products of B4C–Si system. Compared with the porous C/SiC composites, the density of C/SiC–SiB4 composites increased from 1.63 to 2.23 g/cm3 and the flexural strength increased from 135 to 330 MPa. The thermal shock behaviors of C/SiC and C/SiC–SiB4 composites protected with SiC coating were studied using the method of air quenching. C/SiC–SiB4 composites displayed good resistance to thermal shock, and retained 95% of the original strength after being quenched in air from 1300 °C to room temperature for 60 cycles, which showed less weight loss than C/SiC composite.  相似文献   

11.
A dense carbon fiber reinforced silicon carbide matrix composites modified by SiBC matrix (C/SiC-SiBC) was prepared by a joint process of chemical vapor infiltration, slurry infiltration and liquid silicon infiltration. The effects of pyrolytic carbon (PyC) interphase thickness on mechanical properties and oxidation behaviors of C/SiC-SiBC composites were evaluated. The results showed that C/SiC-SiBC composites with an optimal PyC interphase thickness of 450 nm exhibited flexural strength of 412 MPa and fracture toughness of 24 MPa m1/2, which obtained 235% and 300% improvement compared with the one with 50 nm-thick PyC interphase. The enhanced mechanical properties of C/SiC-SiBC composites with the increase of interphase thickness was due to the weakened interfacial bonding strength and the decrease of matrix micro-crack amount associated with the reduction of thermal residual stress. With the decrease in matrix porosity and micro-crack density, C/SiC-SiBC composites with 450 nm-thick interphase exhibited excellent oxidation resistance. The residual flexural strength after oxidized at 800, 1000 and 1200 °C in air for 10 h was 490, 500 and 480 MPa, which increased by 206%, 130% and 108% compared with those of C/SiC composites.  相似文献   

12.
Selective laser reaction sintering techniques (SLRS) techniques were investigated for the production of near net-shape non-oxide ceramics including SiC, Si3N4, and HfC/SiC composites that might be compatible with prevailing powder bed fusion additive manufacturing processes. Reaction bonded layers of covalent ceramics were produced using in-situ reactions that occur during selective laser processing and layer formation. During SLRS, precursor materials composed of metal and/or metal oxide powders were fashioned into powder beds for conversion to non-oxide ceramic layers. Laser-processing was used to initiate simultaneous chemical conversion and local interparticle bonding of precursor particles in 100 vol% CH4 or NH3 gases. Several factors related to the reaction synthesis process—precursor chemistry, gas-solid and gas-liquid synthesis mechanisms, precursor vapor pressures—were investigated in relation to resulting microstructures and non-oxide yields. Results indicated that the volumetric changes which occurred during in-situ conversion of single component precursors negatively impacted the surface layer microstructure. To circumvent the internal stresses and cracking that accompanied the conversion of Si or Hf (that expands upon conversion) or SiOx (that contracts during conversion), optimized ratios of the precursor constituents were used to produce near isovolumetric conversion to the product phase. Phase characterization indicated that precipitation of SiC from the Si/SiO2 melt formed continuous, crack-free, and dense layers of 93.7 wt% SiC that were approximately 35 µm thick, while sintered HfC/SiC composites (84.2 wt% yield) were produced from the laser-processing of Hf/SiO2 in CH4. By contrast, the SLRS of Si/SiOx precursor materials used to produce Si3N4 resulted in whisker formation and materials vaporization due to the high temperatures required for conversion. The results demonstrate that under appropriate processing conditions and precursor selection, the formation of near net-shape SiC and SiC composites might be achieved through single-step AM-compatible techniques.  相似文献   

13.
《Ceramics International》2017,43(15):12280-12286
SiC ceramics, for the first time, were toughened with nano scale carbon nanotubes (CNTs) buckypapers and micro scale carbon fibers within this work. The CNTs buckypapers were alternately laminated with carbon fiber fabrics (Cfb) to a preform by needle punched in Z-direction. Afterwards, the buckypaper-Cfb/SiC composites were obtained by infiltrating of SiC into the as-laminated preform via chemical vapor infiltration (CVI). Some effects of different lamination thickness and CVI times on the mechanical properties of the composites were investigated. Results showed that the maximum flexural strength and work of fracture of the buckypaper-Cfb/SiC composites reached 262.4 MPa and 4.15 kJ m−2, respectively, when the thickness reached about 3.50 mm. Compared to Cfb/SiC composites without buckypapers, the strength and work of fracture of the buckypaper-Cfb/SiC composites increased by 19.8% and 111.7%, respectively. Densified composites can be obtained after CVI for 8 times. A main factor affecting the mechanical properties of buckypaper-Cfb/SiC composites is the degree of densification. Introducing nano scale CNTs and micro scale carbon fibers reaches a multiscale co-toughening effect. Meanwhile, a sandwich structure ceramic matrix composite with high-CNT concentration was obtained in this work.  相似文献   

14.
《Ceramics International》2023,49(5):7833-7841
In this study, continuous carbon reinforced Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C–SiC high entropy ceramic matrix composites were additively manufactured through paper laminating (PL), direct slurry writing (DSW), and precursor infiltration and pyrolysis (PIP). (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C high entropy ceramic (HEC) powders were synthesized by pressureless sintering and ball milling. A certain proportion of HEC powder, SiC powder, water, binder, and dispersant were mixed to prepare the HEC-SiC slurry. Meanwhile, BN coating was prepared on the 2D fiber cloth surface by the boric acid-urea method and then the cloth was cut into required shape. Additive manufacturing were conducted subsequently. Firstly, one piece of the as-treated carbon fiber cloth was auto-placed on the workbench by paper laminating (PL). Then, the HEC-SiC slurry was extruded onto the surface of the cloth by direct slurry writing (DSW). PL and DSW process were repeated, and a Cf/HEC-SiC preform was obtained after 3 cycles. At last, the preform was densified by precursor infiltration and pyrolysis (PIP) and the final Cf/HEC-SiC composite was prepared. The open porosity of the Cf/HEC-SiC composites, with the HEC volume fractions of 15, 30 and 45%, were 7.7, 10.6, and 11.3%, respectively. And the density of the Cf/HEC-SiC composites, with the HEC volume fractions of 15, 30 and 45%, were 2.9, 2.7 and 2.3 g/cm3, respectively. The mechanical properties of the Cf/HEC-SiC composites increased firstly and then decreased with the HEC content increase, reaching the maximum value when the HEC volume fraction was 30%. The mechanical properties of the Cf/HEC-SiC composites containing 45, 30 and 15% HEC were as follows: flexural strength (180.4 ± 14 MPa, 183.7 ± 4 MPa, and 173.9 ± 4 MPa), fracture toughness (11.9 ± 0.17 MPa m1/2, 14.6 ± 2.89 MPa m1/2, and 11.3 ± 1.88 MPa m1/2), and tensile strength (71.5 ± 4.9 MPa, 98.4 ± 12.2 MPa, and 73.4 ± 8.5 MPa). From this study, the additive manufacturing of continuous carbon fiber reinforced high entropy ceramic matrix composites was achieved, opening a new insight into the manufacturing of ceramic matrix composites.  相似文献   

15.
《Ceramics International》2023,49(6):9523-9533
In order to solve the problems (i.e. low infiltration efficiency, cracks, interface separation and poor mechanical properties) in the process of wood-derived C–SiC composites, the thermal modification of fir at low temperatures (300 °C ~ 350 °C) combined with sol-gel infiltration was used to successfully produce biomorphic ceramics. The prepared materials were comprehensively characterized and exhibited improved interfacial bonding between C and SiC and mechanical properties. The weight gain per unit volume (0.123 g/cm3) of SiO2 gel in the fir thermally modified at 300 °C is 167.4%, higher than that (0.046 g/cm3) of the unmodified fir. A well-bonded interface was formed between the SiO2 gel and the pore wall of the fir thermally modified at 300 °C. With the increase of modification temperature from 300 °C to 350 °C, the distance between SiO2 gel and the pore wall increases, and a gap (1–3 μm) is observed between SiO2 gel and the pore wall of the fir carbonized at 600 °C. The C–SiC composites sintered at 1400 °C exhibited the highest compressive strength and bending strength of 40.8 ± 5.8 MPa and 11.7 ± 2.1 MPa, respectively, owing to the well-bonded interface between C of fir thermally modified at 300 °C and SiC. However, the composites sintered at 1600 °C for 120 min exhibited the lowest compressive strength and bending strength of 28.1 ± 13.4 MPa and 5.7 ± 1.6 MPa, respectively, which are 31.1% and 51.3% lower than those sintered at 1400 °C for 120 min, respectively. This might result from the porous structure formed by the excessive consumption of fir-derived carbon during the reaction between C and SiO2 at 1600 °C for 120 min. Therefore, thermal modification in the preparation of biomorphic C–SiC composites can promote slurry infiltration and the formation of a well-bonded interface between C and SiC, thus improving the mechanical properties of the composites.  相似文献   

16.
Precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI) were used to fabricate SiC/SiC composites on a four-step 3D SiC fibre preform deposited with a pyrolytic carbon interface. The effects of fabrication processes on the microstructure and mechanical properties of the SiC/SiC composites were studied. Results showed the presence of irregular cracks in the matrix of the SiC/SiC composites prepared through PIP, and the crystal structure was amorphous. The room temperature flexural strength and modulus were 873.62 MPa and 98.16 GPa, respectively. The matrix of the SiC/SiC composites prepared through CVI was tightly bonded without cracks, the crystal structure had high crystallinity, and the room temperature bending strength and modulus were 790.79 MPa and 150.32 GPa, respectively. After heat treatment at 1300 °C for 50 h, the flexural strength and modulus retention rate of the SiC/SiC composites prepared through PIP were 50.01% and 61.87%, and those of the composites prepared through CVI were 99.24% and 96.18%, respectively. The mechanism of the evolution of the mechanical properties after heat treatment was examined, and the analysis revealed that it was caused by the different fabrication processes of the SiC matrix. After heat treatment, the SiC crystallites prepared through PIP greatly increased, and the SiOxCy in the matrix decomposed to produce volatile gases SiO and/or CO, ultimately leading to an increase in the number of cracks and porosity in the material and a decrease in the material load-bearing capacity. However, the size of the SiC crystallites prepared through CVI hardly changed, the SiC matrix was tightly bonded without cracks, and the load-bearing capacity only slightly changed.  相似文献   

17.
《Ceramics International》2022,48(6):8097-8103
ZrB2/SiC, ZrB2/SiC/Si3N4 and ZrB2/SiC/WC ceramic tool materials were prepared by spark plasma sintering technology, and their oxidation resistance was tested at different oxidation temperatures. When the oxidation temperature is 1300 °C, the oxide layer thickness, oxidation weight gain and flexural strength of ZrB2/SiC/Si3N4 ceramic tool material after oxidation are 8.476 μm, 1.436 mg cm?2 and 891.0 MPa, respectively. Compared with ZrB2/SiC ceramic tool materials, the oxide layer thickness and oxidation weight gain are reduced by 8.2% and 11.8%, respectively, and the flexural strength after oxidation is increased by 116.1%. However, the addition of WC significantly reduces the oxidation resistance of the ceramic tool material. A dense oxide film is formed on the surface of ZrB2/SiC/Si3N4 ceramic tool material during oxidation, which effectively prevents oxygen from entering the inside of the material, thereby improving the oxidation resistance of the ceramic tool material.  相似文献   

18.
Three-layer silicon carbide (SiC) cladding architectures are considered to be promising materials for current light-water nuclear reactors. Herein, a novel processing approach was proposed to fabricate dense three-layer SiC tubes by introducing SiC nanowires (NWs) on the graphite rod, which resulted in change in the valley-peak structure of SiCf tubular preform. A dense three-layer-NWs SiC cladding tube, consisting of a chemical vapor infiltration (CVI)-SiC inner layer, a CVI-SiCf/SiC composite layer, and a CVI-SiC outer layer, was obtained through CVI process. Microstructure and hoop strength of the as-obtained three-layer-NWs SiC cladding tube were systematically investigated. By avoiding delamination of the layers and reducing the pores, the three-layer-NWs SiC cladding tube exhibited an average hoop strength of 316.6 MPa with a Weibull modulus of 11.55.  相似文献   

19.
《Ceramics International》2021,47(22):31251-31258
A modification of the precursor infiltration pyrolysis (PIP) method was explored to prepare the integrated doped ceramic matrix and coating by the added SiC nanowires layer and shape-stabilization process. The epitaxial layer of SiC nanowires provided surficial attachments for the precursor. And the shape-stabilization process aggregated loose ceramic particles into a coating. Then the SiC nanowire-reinforced ZrC–SiC coating-matrix integrated C/C (S/SZ-CZ/C) composite was simply prepared by the modified PIP method. The bonding strength between the coating and matrix of the S/SZ-CZ/C composite was improved. Through the ablation test, the mass and linear ablation rate of the S/SZ-CZ/C composite were 0.46 mg/s and 0.67 μm/s, which were 60.34 % and 74.91 % lower than those of the SiC nanowire-reinforced C/C–ZrC (S/CZ/C) composite, respectively. The integration of the coating and matrix enabled the formation of a continuous oxide layer of molten SiO2 and ZrO2 in the ablation process, which helped to block the oxygen and heat during the ablation test. Thus the ablation resistance of the materials was systematically and effectively improved.  相似文献   

20.
To improve the oxidation resistances of SiC coated C/C composites by a pack cementation (PC) method at high temperature and alleviate the siliconization erosion of molten silicon on C/C substrate during the preparation of SiC coating, a SiO2-SiC reticulated layer with SiC nanowires was pre-prepared on C/C composites through combined slurry painting and thermal treatment before the fabrication of SiC coating. The presence of porous SiO2-SiC layer with SiC nanowires was beneficial to fabricate a compact and homogeneous SiC coating resulting from synergistic effect of further reaction between SiO2 and pack powders and the reinforcement of SiC nanowires. Therefore, the results of thermal shock and isothermal oxidation tests showed that the mass loss of modified SiC coating was only 0.02 % after suffering 50-time thermal cycles between room temperature and 1773 K and decreased from 5.95 % to 1.08 % after static oxidation for 49.5 h in air at 1773 K. Moreover, due to the blocking effect of SiO2-SiC reticulated layer on siliconization erosion during PC, the flexural strength of SiC coated C/C composites with SiO2-SiC reticulated layer increased by 64.8 % compared with the untreated specimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号