首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zirconia/carbon nanofiber composites were prepared by hot pressing and spark plasma sintering with 2.0 and 3.3 vol.% of carbon nanofibers (CNFs). The effects of the sintering route and the carbon nanofiber additions on the microstructure, fracture/mechanical and electrical properties of the CNF/3Y-TZP composites were investigated. The microstructure of the ZrO2 and ZrO2–CNF composites consisted of a small grain sized matrix (approximately 120 nm), with relatively well dispersed carbon nanofibers in the composite. All of the composites showed significantly higher electrical conductivity (from 391 to 985 S/m) compared to the monolithic zirconia (approximately 1 × 10−10 S/m). The spark plasma sintered composites exhibited higher densities, hardness and indentation toughness but lower electrical conductivity compared to the hot pressed composites. The improved electrical conductivity of the composites is caused by CNFs network and by thin disordered graphite layers at the ZrO2/ZrO2 boundaries.  相似文献   

2.
《Ceramics International》2022,48(24):36515-36520
Silica glass composites, with biserial and hierarchical percolative network made of carbon nanofibers (CNFs), was fabricated using a layer-by-layer technique and spark plasma sintering to obtain high optical transmittance and electrical conductivity. Owing to the network, the critical volume fraction, Vc, for the CNF percolation in the silica glass-matrix composite (0.5–0.7 vol%), when the electrical conductivity of the composite drastically increased with change from insulator (~10?10 S/m) to conductor (~10?1 S/m), is smaller than theoretical Vc predicted for the three-dimensional random orientation of CNFs (2.6 vol% for the CNF aspect ratio of 30). The conductivity of the composite with above the Vc of CNFs (~10 S/m) is higher than that reported for the polymer-matrix composite (~10?5–~10?3 S/m). Furthermore, high optical transmittance was observed for the electrically conductive composite with Vc of CNFs.  相似文献   

3.
S. Kumar 《Carbon》2010,48(13):3846-35
The influence of low cost, commercially oxidized carbon nanofibers (ox-CNFs) on the morphological, thermal, mechanical and electrical properties of polycarbonate (PC) composites was examined. Using a simple solution mixing process leads to good dispersion and high packing density of CNFs in the resultant composites. The composite materials exhibit a dramatic improvement in the DC conductivity; for example, increasing from 2.36 × 10−14 S/m for PC to ca. 10−2 S/m for the composite at only 3.0 wt.% of CNFs, and exhibits a very fast static charge dissipation rate. Dynamic mechanical analysis showed a remarkable increase in storage modulus (282%) at 165 °C, compared to pure PC. Thermogravimetric analysis showed that thermal stability of the composites increased by 54 °C compared to the pure PC. To our knowledge, the measured electrical conductivity and thermal properties for PC/CNF are the highest values yet reported for PC/CNF composites at comparable loadings. The AC/DC conductivity is shown to play an important role to predict the state of dispersion.  相似文献   

4.
The continuous highly aligned hybrid carbon nanofibers (CNFs) with different content of acid-oxidized multi-walled carbon nanotubes (MWCNTs) were fabricated through electrospinning of polyacrylonitrile (PAN) followed by a series of heat treatments under tensile force. The effects of MWCNTs on the micro-morphology, the degree of orientation and ordered crystalline structure of the resulting nanofibers were analyzed quantitatively by diversified structural characterization techniques. The orientation of PAN molecule chains and the graphitization degree in carbonized nanofibers were distinctly improved through the addition of MWCNTs. The electrical conductivity of the hybrid CNFs with 3 wt% MWCNTs reached 26 S/cm along the fiber direction due to the ordered alignment of MWCNTs and nanofibers. The reinforcing effect of hybrid CNFs in epoxy composites was also revealed. An enhancement of 46.3% in Young’s modulus of epoxy composites was manifested by adding 5 wt% hybrid CNFs mentioned above. At the same time, the storage modulus of hybrid CNF/epoxy composites was significantly higher than that of pristine epoxy and CNF/epoxy composites not containing MWCNTs, and the performance gap became greater under the high temperature regions. It is believed that such a continuous hybrid CNF can be used as effective multifunctional reinforcement in polymer matrix composites.  相似文献   

5.
This paper presents experimental results of the effect of amine functionalization of carbon nanofibers (CNF) on the electrical, thermal, and mechanical properties of CNF/epoxy composites. The functionalized and non-functionalized CNFs (up to 3 wt%) were dispersed into epoxy using twin screw extruder. The specimens were characterized for electrical resistivities, thermal conductivity (K), UTS, and Vicker’s microhardness. The properties of the nanocomposites were compared with that of neat epoxy. The volume conductivity of the specimens increased by E12 S/cm and E09 S/cm in f-CNF/epoxy and CNF/epoxy, respectively, at 3 wt% filler loading. The increase in K for former was 106% at 150 °C, while for the latter it was only 64%. Similarly, UTS increased by 61% vs. 45% and hardness 65% vs. 43%. T g increased with increase in filler content. SEM examinations showed that functionalization resulted in better dispersion of the nanofibers and hence greater improvement in the studied properties of the nanocomposites.  相似文献   

6.
The effect of addition of submicrometer‐sized B4C (5,10 and 15 wt%) on microstructure, phase composition, hardness, fracture toughness, scratch resistance, wear resistance, and thermal behavior of hot‐pressed ZrB2‐B4C composites is reported. ZrB2‐B4C (10 wt%) composite has VH1 of 20.81 GPa and fracture toughness of 3.93 at 1 kgf, scratch resistance coefficient of 0.40, wear resistance coefficient of 0.01, and ware rate of 0.49 × 10?3 mm3/Nm at 10N. Crack deflection by homogeneously dispersed submicrometer‐sized B4C in ZrB2 matrix can improve the mechanical and tribological properties. Thermal conductivity of ZrB2‐B4C composites varied from 70.13 to 45.30 W/m K between 100°C and 1000°C which is encouraging for making ultra‐high temperature ceramics (UHTC) component.  相似文献   

7.
《Ceramics International》2020,46(12):20226-20235
The present work investigates the effect of (0–10 wt%) ZrB2 reinforcement on densification, mechanical, tribological and electrical properties of Cu. The consolidation of Cu–ZrB2 samples was carried out using a hot press (temperature: 500 °C, pressure: 500 MPa, time: 30 min, vacuum pressure: 1.3 × 10-2 mbar). The bulk density of the hot-pressed Cu composites decreased from 8.84 g/cc to 8.16 g/cc and the relative density of samples lowered from 98.6% to 92.1% with the addition of ZrB2. The incorporation of hard ZrB2 (up to 10 wt%) improved the hardness of Cu (1.32–2.55 GPa). However, the yield strength and compressive strength of Cu composites increased up to 5 wt% ZrB2, and further addition of ZrB2 lowered its strength. The yield strength of Cu samples varied from 602 to 672 MPa and the compressive strength between ~834 and 971 MPa. On the other hand, the coefficient of friction (COF) (from 0.49 to 0.18) and wear rate (from 49.3 × 10-3 mm3/Nm to 9.1 × 10-3 mm3/Nm) of Cu–ZrB2 samples considerably decreased with the addition of ZrB2. Significantly low wear was observed with Cu-10 wt% ZrB2 (Cu-10Z) samples, which is 5.41 times less than pure Cu. As far as the wear mechanisms are concerned, in pure Cu, continuous chips (wear debris) were formed during sliding wear by plowing. Whereas the major amount of material loss was occurred due to the plowing mechanism with discontinuous and short chip formation for Cu–ZrB2 composites. The electrical conductivity of Cu–ZrB2 samples decreased from 75.7% IACS to 44.1% IACS. In particular, Cu with ZrB2 (up to 3 wt%) could retain the conductivity of 66.8% IACS. This study reveals that the addition of ZrB2 (up to 3 wt%) is advantageous to have a good combination of properties for Cu.  相似文献   

8.
This study investigates strain dependent energy dissipation characteristics in carbon nanofiber (CNF) reinforced carbon fiber epoxy composites (multi-scale composites) by characterizing their viscoelastic properties and vibrational damping response. The air damping effect on the energy dissipation characteristics is also examined. The viscoelastic properties of epoxy containing two weight fractions (3 and 5 wt%) of added CNFs were characterized using dynamic mechanical analysis. Carbon fiber layers were then infiltrated with the two epoxy resins containing the CNFs to form multi-scale composites. A strain dependent loss factor behavior of the multi-scale composites was observed in the dynamic cyclic testing due to CNF’s stick–slip friction, showing a 53% increase in loss factor for the composites containing 5 wt% CNFs. The beam vibration test results also indicated an improvement in loss factor for the multi-scale composite beams relative to those without the CNF addition in the first two resonant frequencies. The multi-scale composite beams exhibit an increase in loss factor, up to 43%, at high amplitude excitation, while a reduction in loss factor was seen at low amplitude. These observed strain dependent damping characteristics seem to result from both the stick–slip friction and the air damping effect.  相似文献   

9.
Three dimensional electrospun carbon nanofiber (CNF)/hydroxyapatite (HAp) composites were biomimetically synthesized in simulated body fluid (SBF). The CNFs with diameter of ∼250 nm were first fabricated from electrospun polyacrylonitrile precursor nanofibers by stabilization at 280 °C for 2 h, followed by carbonization at 1200 °C. The morphology, structure and water contact angle (WCA) of the CNFs and CNF/HAp composites were characterized. The pristine CNFs were hydrophobic with a WCA of 139.6°, resulting in the HAp growth only on the very outer layer fibers of the CNF mat. Treatment in NaOH aq. solutions introduced carboxylic groups onto the CNFs surfaces, and hence making the CNFs hydrophilic. In the SBF, the surface activated CNFs bonded with Ca2+ to form nuclei, which then easily induced the growth of HAp crystals on the CNFs throughout the CNF mat. The fracture strength of the CNF/HAp composite with a CNF content of 41.3% reached 67.3 MPa. Such CNF/HAp composites with strong interfacial bondings and high mechanical strength can be potentially useful in the field of bone tissue engineering.  相似文献   

10.
Li-Li Sun  Bin Li  Wei-Hong Zhong 《Polymer》2010,51(14):3230-3242
Poly(vinylidene fluoride) (PVDF) is an important ferroelectric semi-crystalline polymer with multiple-phase behavior. In this study, remarkable effects of the various crystalline structures of PVDF nanocomposites on alternating current (AC) conductivity were discovered using carbon nanofibers (CNF). It was found that the transformation from α-phase to β-phase in PVDF, induced by the addition of CNFs, had a surprisingly suppressive effect on the AC conductivity of the nanocomposites. These unexpected results indicate that the decline in conductivity occurs after re-crystallization treatment (annealing) of the nanocomposites, and the reduction levels increase with increasing amounts of CNFs. Interestingly, the AC conductivity of annealed 5 wt% CNF/PVDF composites becomes even lower than that of re-crystallized nanocomposites with 3 wt% CNFs. These findings are believed to be very significant for fabrication and long-term service of PVDF composites in industry, which often involves exposure to repeated thermal cycling.  相似文献   

11.
Acrylonitrile–styrene–acrylate/natural graphite/carbon nanofiber composites (ASA/NG/CNF) were prepared using a melting blending method. The effects of CNFs on the morphology, rheological properties, dynamical mechanical properties, electrical resistivity, and electromagnetic interference shielding effectiveness (EMI SE) were studied using a scanning electron microscope, a rotational rheometer, and dynamic mechanical analysis (DMA). The addition of CNFs changed the oriented and laminated structure of the ASA/NG composite. The flexural strength of the ASA composite reached a maximum at 6% CNF, and then it began to decrease. The addition of CNFs did not alter the glass‐transition temperature of ASA, but it largely increased the storage modulus of the composite in DMA tests. In the rheological measurements, the complex viscosity and storage modulus of the composite increased as CNF content increased, and the resistance to creep of the composites was significantly increased by the addition of CNFs. The electrical resistivity of the ASA composites decreased from 49.8 Ω cm to 2.3 Ω cm as the CNF content was increased from 0 to 12%. At the same time, the EMI properties of the composites rose from 15 dB to 30 dB in the frequency range 30–1500 MHz. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45455.  相似文献   

12.
Fully dense boron carbide-silicon carbide composites were successfully produced by spark plasma sintering method at 1950 °C under 50 MPa applied pressure. The effect of dry and wet mixing methods on uniformity was observed. Density, elastic modulus, microstructure, Vickers hardness and fracture toughness were evaluated. The results showed that dry mixing did not provide uniformity on composites properties. On the other hand wet mixing provided uniformity in microstructure and consistency in material properties. The hardness of the sample containing 50 wt% B4C was measured to be 30.34 GPa hardness value was found at 50 wt% B4C content sample. The increase in the B4C content of the composites decreased the Young's modulus, shear modulus, bulk modulus and fracture toughness. The highest values were found at 10 wt% B4C sample which were 415 GPa (E), 177 GPa (G), 209 GPa (K), and 2.89 MPa m1/2 fracture toughness (KIc).  相似文献   

13.
In this work was investigated the effect of the addition of barium titanate (BaTiO3) on electrical properties of two chemically recyclable thermosets, polyhemiaminal (PHA) and polyhexahydro‐s‐triazine (PHT), both fabricated from 4,4′‐oxydianiline (ODA), an ether derivative of aniline and paraformaldehyde. Thermal and mechanical properties as well as chemical recyclability of the two polymers and their nanocomposites/nanodielectrics were also investigated. In addition, a quantitative analysis was conducted of the nanoparticle dispersion in the PHA‐/PHT‐based BaTiO3‐containing nanocomposites using transmission electron microscopy imaging and the nearest‐neighbor distance index and this index was used to analyze the investigated properties in connection with the proper mechanisms. Regarding the electrical properties for both neat polymers, conductivity values of the order of 10?8 S m?1 at 100 Hz were observed and dielectric constant values close to 2.80 for both polymers at 1 kHz. The addition of 0.5 wt% of BaTiO3 ferroelectric nanoparticles increased by about 44% the dielectric constant (1 kHz) and conductivity (102 Hz) of the PHA‐based nanocomposite. PHA and PHT exhibited glass transition temperature (Tg) values in the range 125–180 °C. An increase of 7 °C in Tg was observed after the incorporation of 0.5 wt% of BaTiO3 into PHA. Concerning the mechanical properties, values in the range 4.00–4.45 GPa for reduced modulus and 0.30–0.43 GPa for nanohardness for PHA and PHT polymers were observed. Independently of filler content or polymer matrix, both mechanical properties were enhanced after the addition of BaTiO3. The chemical recycling of PHA/PHT and all nanocomposites in the initial ODA reagent after sulfuric acid treatment was successfully characterized using the NMR and Fourier transform infrared spectroscopic techniques. © 2018 Society of Chemical Industry  相似文献   

14.
《Ceramics International》2023,49(16):26719-26725
The effect of MnO2 additives on the sintering behavior and mechanical properties of alumina-toughened zirconia (ATZ, with 10 vol% alumina) composites was investigated by incorporating different amounts of MnO2 (0, 0.5, 1.0, and 1.5 wt%) and sintering at various temperatures ranging from 1300 to 1450 °C. The addition of MnO2 up to 1.0 wt% improved the sintered density, hardness, flexural strength, and fracture toughness of the composite. However, the addition of 1.5 wt% MnO2 degraded the relative density, hardness, and flexural strength of the composite due to the transformation of the ZrO2 phase from tetragonal to monoclinic and grain coarsening. Optimal results were obtained with 1.0 wt% MnO2 and sintering at 1450 °C, which improved the mechanical properties (hardness: 13.5 GPa, flexural strength: 1.2 GPa, fracture toughness: 8.5 MPa m1/2) and lowered the sintering temperature compared to the conventional sintering temperature of ATZ composites (1550 °C). Thus, the ATZ composite doped with MnO2 is a promising material for structural engineering ceramics owing to its improved mechanical properties and lower sintering temperature.  相似文献   

15.
Development of cellulose nanofibrils (CNFs) reinforced polypropylene (PP) nanocomposites using melt compounding processes has received considerable attention. The main challenges are to obtain well‐dispersed CNFs in the polymer matrix and to establish compatible linkages between the CNFs and PP. Manufacturing of CNF reinforced PP nanocomposites was conducted using a twin‐screw co‐rotating extruder with the masterbatch concept. Modifications of CNFs using maleic anhydride polypropylene were performed. The best mechanical properties of the nanocomposites are 1.94 GPa (tensile modulus), 32.8 MPa (tensile strength), 1.63 GPa (flexural modulus), 50.1 MPa (flexural strength), and 3.8 kJ m−2 (impact strength), which represents about 36, 11, 21, 7, and 23% improvement, respectively, compared to those of pure PP (1.43 GPa, 29.5 MPa, 1.35 GPa, 46.9 MPa, and 3.1 kJ m−2). Fracture morphology examination indicated good dispersion of CNFs in the PP matrix was achieved through this specific manufacturing process. MAPP treatments enhanced the interfacial adhesion between the CNFs and PP. POLYM. COMPOS., 37:782–793, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
Novel carbon nanofiber (CNF) ‐filled bismalemide composites were fabricated by a thermokinetic mixing method. The thermal and mechanical properties of composites containing 1 wt % and 2 wt % CNFs were investigated. Thermogravimetric analysis demonstrated that minimal improvement in thermal stability of the nanocomposites was obtained by the addition of CNFs. Dynamic mechanical analysis showed an increase in storage modulus (E′) and glass transition temperature (Tg) upon incorporation of nanofibers. Limiting oxygen index (LOI) has also been found to increase with incorporation of CNFs. Morphological studies of fractured surfaces of the composites has been carried out by scanning electron microscopy to determine the effect of fiber content and dispersion on the failure mechanism. In general, good dispersion was observed, along with agglomeration at some points and some fiber matrix interfacial debonding. A decrease in mechanical strength has been observed and debonding was found as the main failure mechanism. Further research outlook is also presented. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
SiC whisker (SiCw)-reinforced SiC composites were prepared by an oscillatory pressure sintering (OPS) process, and the effects of SiCw content on the microstructure and mechanical and tribological properties of such composites were investigated. The addition of SiCw could promote the formation of long columnar α-SiC, and the aspect ratio of α-SiC grains first increased and then decreased with the increase of SiCw content. When the SiCw content was 5.42 wt%, the relative density of the SiC–SiCw composite reached up to 99.45%. The SiC–5.42 wt% SiCw composite possessed the highest Vickers hardness, fracture toughness, and flexural strength of 30.68 GPa, 6.66 MPa·m1/2, and 733 MPa, respectively. In addition, the SiC–5.42 wt% SiCw composite exhibited the excellent wear resistance when rubbed with GCr15 steel balls, with a friction coefficient of .76 and a wear rate of 4.12 × 10−7 mm3·N−1·m−1. This could be ascribed to the improved mechanical properties of SiC–SiCw composites, which enhanced the ability to resist peeling and micro-cutting, thereby enhancing the tribological properties of the composites.  相似文献   

18.
In this study, polyimide/graphene nanocomposite films which exhibited significant enhancements in mechanical properties and electrical conductivity were successfully fabricated. Graphene oxide (GO) synthesized by Hummer’s method was chemically modified with ethyl isocyanate to give ethyl isocyanate-treated graphene oxide (iGO), which is readily dispersed in N,N′-dimethylformamide (DMF). The iGO dispersion in DMF was then used as media for synthesis of polyimide/functionalized graphene composites (PI/FGS) by an in situ polymerization approach. It was shown that addition of only 0.38 wt% of FGS, Young’s modulus of the PI/FGS composite film was dramatically increased from 1.8 GPa to 2.3 GPa, which is approximately 30% of improvement compared to that of pure PI film, and the corresponding tensile strength was increased from 122 MPa to 131 MPa. In addition, the electrical conductivity of the PI/FGS with this graphene content was increased by more than eight orders of magnitude to 1.7 × 10−5 S m−1.  相似文献   

19.
High-performance ceramics with low thermal conductivity, high mechanical properties, and idea thermal expansion coefficients have important applications in fields such as turbine blades and automotive engines. Currently, the thermal conductivity of ceramics has been significantly reduced by local doping/substitution or further high-entropy reconfiguration of the composition, but the mechanical properties, especially the fracture toughness, are insufficient and still need to be improved. In this work, based on the high-entropy titanate pyrochlore, TiO2 was introduced for composite toughening and the high-entropy (Ho0.2Y0.2Dy0.2Gd0.2Eu0.2)2Ti2O7-xTiO2 (x = 0, 0.2, 0.4, 1.0 and 2.0) composites with high hardness (16.17 GPa), Young's modulus (289.3 GPa) and fracture toughness (3.612 MPa·m0.5), low thermal conductivity (1.22 W·m−1·K−1), and thermal expansion coefficients close to the substrate material (9.5 ×10−6/K) were successfully prepared by the solidification method. The fracture toughness of the composite toughened sample is 2.25 times higher than that before toughening, which exceeds most of the current low-thermal conductivity ceramics.  相似文献   

20.
In this study, the effects of carbon nanofiber (CNF) surface modification on mechanical properties of polyamide 1212 (PA1212)/CNFs composites were investigated. CNFs grafted with ethylenediamine (CNF‐g‐EDA), and CNFs grafted with polyethyleneimine (CNF‐g‐PEI) were prepared and characterized. The mechanical properties of the PA1212/CNFs composites were reinforced efficiently with addition of 0.3 wt % modified CNFs after drawing. The reinforcing effect of the drawn composites was investigated in terms of interfacial interaction, crystal orientation, crystallization properties and so on. After the surface modification of CNFs, the interfacial adhesion and dispersion of CNFs in PA1212 matrix were improved, especially for CNF‐g‐PEI. The improved interfacial adhesion and dispersion of CNFs in PA1212 matrix was beneficial to reinforcement of the composites. Compared with pure PA1212, improved degree of crystal orientation in the PA1212/CNF‐g‐PEI (CNF‐g‐EDA) composites was responsible for reinforcement of mechanical properties after drawing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41424.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号