首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
土工格栅拉拔试验被认为是研究土工格栅与土相互作用行为最直接有效的方法。在土工格栅拉拔试验中,常采用刚性或柔性顶部边界条件施加竖向荷载。为了研究刚性与柔性顶部边界条件对拉拔试验结果的影响,基于离散元数值模拟,从细观层面深入分析了刚性与柔性顶部边界条件下土工格栅与土的力学响应。研究结果表明:在拉拔位移较小的情况下,刚性与柔性顶部边界条件对拉拔试验结果几乎没有影响;随着拉拔位移的增大,顶部边界条件对拉拔试验结果的影响逐渐明显,刚性顶部边界条件下的最大拉拔阻力略大于柔性顶部边界条件下的最大拉拔阻力;土工格栅张力与试样内部土颗粒间接触力分布情况、试样内部土颗粒旋转情况以及顶部加载板颗粒的竖向位移分布规律直观地展现了顶部边界条件对拉拔试验结果的影响。本研究结果有望为规范土工格栅拉拔试验方法提供科学依据。  相似文献   

2.
This paper provides a more realistic representation of the soil-geogrid interface in indirectly activated geogrids. A new testing apparatus is designed using transparent soil that allows an unobstructed observation of the interface to investigate the interaction occurring along the reinforcement. In this investigation, the reinforcement is indirectly activated by the deformations of the surrounding soil. Deformations were determined by digital image correlation (DIC) using a dot pattern attached to the geogrid and a laser speckle plane within the transparent soil. The interaction is derived from relative soil-geogrid displacements, deflections of geogrid transverse members, geogrid strain and force distributions as well as shear stresses acting at the interface. Three zones were identified corresponding to the distinct modes of interaction: pushout, pullout and interlocking, whereby a micro-mechanical conceptual model was validated. The geogrid force reaches its maximum at the intersection of the critical slip plane with the reinforcement. The results indicate that the pushout, pullout and interlocking areas cover 15%, 49% and 36% of the total geogrid length respectively. In this study, a transition area between the pushout and pullout zones was observed where the mobilised interface shear stress increases to a maximum value.  相似文献   

3.
Reinforcing elements embedded within soil mass improve stabilization through a load transfer mechanism between the soil and the reinforcement. Geogrids are a type of geosynthetic frequently used for soil reinforcement, consisting of equally spaced longitudinal and transverse ribs. Under pullout conditions, the longitudinal ribs are responsible for tensile resistance, while transverse ribs contribute to a passive resistance. This paper describes a new analytical model capable of reproducing both load transfer and displacement mechanisms on the geogrid length, under pullout conditions. The model subdivides the geogrid into rheological units, composed by friction/adhesion and spring elements, mounted in line. Friction/adhesion elements respond to the shear component mobilized at the soil–geogrid interface. Spring elements respond to the geogrid's tensile elongation. Model parameters are obtained through tensile strength tests on geogrids and conventional direct shear tests on soil specimens. The need for instrumented pullout tests becomes therefore eliminated. Results predicted from this new model were compared to instrumented pullout test data from two types of geogrids, under various confining stress levels. The results revealed that the new model is capable of reasonably predicting load and displacement distributions along the geogrid.  相似文献   

4.
地工格网(以下称格网)用於加劲土壤时,除考虑无围压下的张力行为之外,围压下之力学性质更是设计考量的重点。实际工程应用而言,基於经济考虑,期以现地土壤作为回填材料。本研究分别以拉出、围压抗张与直剪三种试验来探讨格网放土壤中之力学行为;并利用凝聚性泥岩与非凝聚性细砂作为回填材料,评估两种回填材料对加劲成效之影响。结果显示,柔性格网之肋条在拉出过程中易扭曲,造成主应力面旋转的现象,以致拉出阻抗大放硬性格网;围压下格网抗张的应力-应变行为可分为三阶段,即束制阻抗期、张力发展期与破坏期。束制阻抗期大都於3%应变内即已完成;在低围压情况拉出阻抗达20%~60%之拉出强度(相同应变),在高围压下达150%。由直接剪力试验结果可以预测:(a)格网/泥岩加劲结构-低围压时,剪力破坏面应通过格网/泥岩之界面;而高围压时,剪力破坏面应通过泥岩上体。(b)格网/细砂加劲结构-低围压与高围压下剪力破坏面应通过格网/细砂之界面。  相似文献   

5.
为研究土工格栅纵横肋与砂土的界面受力特性,进行了不同法向压力的格栅拉拔试验,分别设计了横向与纵向剪除横肋的6种拉拔试验工况,研究横肋减少对格栅受力、拉拔阻力峰值和位移及似摩擦系数的影响,并分别对比了整体剪切和刺入剪切破坏模式下的格栅拉拔阻力,揭示格栅筋土界面的相互作用机理。结果表明,随着横肋的减少,格栅拉拔阻力和似摩擦系数不断地变小;横肋沿横向减少的格栅最大拉拔阻力大于横肋沿纵向减少的最大拉拔阻力,完整横肋有助于筋土界面的加筋作用的充分发挥。理论计算格栅界面摩擦力约为18%~19%的试验拉拔阻力,而试验获得的格栅界面摩擦力与试验拉拔阻力的比值为29%~33%,横肋与土体挤压咬合产生的承载力分量占了总拉拔阻力的67%~71%,横肋极大提高了土工格栅的拉拔阻力。  相似文献   

6.
A series of pullout tests were carried out by using a highly extensible geogrid with the different longitudinal member and transverse member ratios to investigate the influence of the longitudinal and transverse members of a highly extensible geogrid on the pullout behavior. From the results, the following were made clear: the mobilization of bond stress depends on the strain of the geogrid; the influence zones of longitudinal members become isolated with the increase of the longitudinal member spacing; the mobilization of transverse member resistance depends on the displacement of the geogrid at the location of that transverse member; and the contribution of longitudinal members to the pullout force is more significant than that of transverse members during the deformation stage in the case of the highly extensible geogrid, since large elongation occurs in the geogrid, which restricts the mobilization of the full effect of transverse members. Furthermore, the mobilization mechanisms of the longitudinal member and transverse member effects are discussed.  相似文献   

7.
Geogrids have been commonly used in reinforced soil structures to improve their performance. To investigate the geogrid reinforcement mechanisms, discrete element modelling of unreinforced and geogrid reinforced soil foundations and slopes was conducted under surface strip footing loads in this study. For unreinforced and reinforced soil foundations, the numerically obtained footing pressure-settlement relationships were validated by experimental results from the literature. In the numerical modelling of unreinforced and reinforced soil slopes, identical models and micro input parameters to those used in the numerical modelling of unreinforced and reinforced soil foundations were used. The geogrid reinforcing effects under strip footing loads were visualised by the qualitative contact force distributions in the soil structures, as well as the qualitative and quantitative tensile force distributions along the geogrids. In addition, the qualitative displacement distributions of soil particles in the soil structures and the quantitative vertical displacement distributions along soil layers/geogrids also indicated the geogrid reinforcing effects in such practical reinforced soil structures. The discrete element modelling results visualise and quantify the load transfer and spreading behavior in geogrid reinforced soil structures, and it provides researchers with an improved understanding of geogrid reinforcing effects at microscopic scale under strip footing loads.  相似文献   

8.
This study investigates the interaction between soil and geogrids by using both direct shear and pull-out tests and applied the results to a case study. A polymer geogrid and bamboo grids were used with clayey sand and weathered clay as backfill since these materials are readily available in Thailand. The results indicated that the interaction between soil and reinforcement consists of: (a) the adhesion between soil and reinforcement on the solid surface area of the geogrid; and (b) the bearing capacity of soil in front of all transverse members of the geogrids which behaved as a strip footing embedded in the soil. The proposed design procedure for pull-out resistance agreed fairly well with the laboratory pull-out test results. In addition, it was observed that bamboo grids have higher pull-out resistance per unit area than the polymer geogrids. Moreover, the cohesive fill proved to be quite effective when used with geogrid reinforcement. Finally, the proposed design procedure and test results were applied to a case study on an irrigation canal bank repaired by the Public Works Department of Thailand using cohesive backfill and Tensar SS2 geogrids resulting in much improved slope stability.  相似文献   

9.
为研究多层加筋垫层刚性桩网复合地基的承载特性,将设置有多层土工格栅的加筋垫层视为大挠度薄板进行分析,运用层合板理论,模拟多层土工格栅与碎石垫层之间的相互作用,建立加筋垫层抗弯刚度矩阵的计算方法。考虑刚性桩网复合地基的三维应力和位移边界条件,根据静力平衡条件,建立加筋垫层应力函数和挠度微分控制方程,并利用伽辽金方法进行求解。在此基础上,利用Winkler地基梁理论和大挠度薄板理论对桩土应力比和格栅拉力进行计算。最后,运用实际工程对计算方法进行验证,并综合分析格栅总层数、铺设间隔和位置等因素对桩土应力比及格栅拉力的影响。研究结果表明:理论计算结果与实测结果较为吻合;随着格栅总层数的增大,桩土应力比增大而格栅拉力降低,铺设2~3层格栅效率最高;随着铺设格栅间隔和底层格栅距桩帽距离的增大,桩土应力比降低,而格栅拉力增大。  相似文献   

10.
研制了一台新型可视自动采集数据的土工拉拔试验装置,可用于多种土工材料和填料作用下的拉拔试验。该装置改进了加载系统和反力系统,实现了拉拔界面的可视与数据采集的自动化,并可量测土工材料不同嵌固长度处的位移,获取土工材料变形值,探索筋土作用过程中筋材受力机理及界面土体位移变化规律。使用新研制的试验装置开展了以砾类粗粒土为填料的格栅拉拔试验,结果表明:上覆荷载增大,土中格栅的应变变小,土体与格栅的界面摩擦和嵌固作用越显著;筋土界面处土体颗粒存在平移及转动两种运动模式,且界面处土体形成稳定的位移集中带。  相似文献   

11.
Lightweight Cellular Concrete (LCC) has been increasingly used as backfill material for retaining walls, ground improvement, and pavements due to its low self-weight, quick installation, and high compressive strength as compared with soils. This paper presents a series of pullout tests performed in the laboratory to investigate the pullout resistance of geogrid (extensible reinforcement) and steel strip (inextensible reinforcement) embedded in LCC. Pullout displacements and pullout forces were monitored using displacement transducers (DT) and a load cell during the pullout process. This study investigated the effects of age, normal stress, fly ash, the presence of a cold joint, and re-pullout on the pullout resistance and calculated the pullout resistance factors F* for geogrid and steel strip embedded in LCC. Test results show that for the geogrid embedded in LCC, the maximum pullout force increased as the normal stress increased. For the steel strip embedded in LCC, the maximum pullout force was independent of the normal stress and increased as the age and the cement to fly ash ratio increased. Test results also show that the presence of a cold joint did not reduce the pullout resistance, while the re-pullout test had lower pullout resistance compared to the original pullout test for the same specimen. The pullout resistance factors F* for steel strips were greater than those for geogrids and these factors decreased as the normal stress increased.  相似文献   

12.
The paper investigates the feasibility of using fine-grained soil as backfill material of geosynthetic-reinforced walls and slopes, through a laboratory study on pullout behavior of geogrids in granular layers. A series of pullout tests was carried out on an HDPE uniaxial geogrid in thin sand and gravel layers that were embedded in clay specimens.Aside from different soil arrangements, the influences of moisture content and overburden pressure on the geogrid pullout behavior is assessed and discussed. The tests were carried out at four different gravimetric water contents (GWC) on the dry and wet sides of the clay optimum moisture content (OMC), and overburden pressure values within the range σv = 25–100 kPa. Particle Image Velocimetry (PIV) was used to capture digital images during the tests, which were processed to help with the interpretation and improved understanding of the soil-geogrid interactions at different GWC values. Results show that embedding geogrid reinforcement in layers of sand or gravel can significantly increase the pullout resistance in an otherwise moist clay backfill, and this improved pullout efficiency is greater at higher overburden pressures. The improvement in pullout capacity was observed in clay specimens compacted at both the dry and wet sides of the OMC.  相似文献   

13.
Geosynthetic reinforced soil walls and slopes are now a mature technology in geotechnical engineering. Nevertheless, the mechanisms of soil-geosynthetic interaction are not fully understood for pullout of a geogrid material in the anchorage zone of a reinforced structure. It is also difficult to quantify the interactions between the geogrid and the soil. A new strategy to overcome these difficulties is to use a pullout box with a transparent glass bottom, a transparent soil, and non-contact measurement technology. This paper describes such a pullout box apparatus which is used in combination with a recently developed transparent granular soil. Embedded geogrid specimens are visible through the transparent bottom of the box and the surrounding soil. The displacements of the geogrid and seed (target) particles placed in the transparent soil are tracked using digital images captured by a row of synchronized cameras located below the apparatus. Digital processing is carried out using the Digital Image Correlation (DIC) technique to quantify the in-situ displacement of the geogrid specimen and surrounding soil. The displacements are used to compute continuous longitudinal strain profiles in the geogrid specimen over the duration of each pullout test and relative shear displacements between the geogrid and the soil. Also reported are lessons learned to improve the method of clamping geogrid specimens at the front of the pullout box which are also applicable to conventional pullout box equipment.  相似文献   

14.
The main interaction mechanisms affecting the pullout resistance of geogrids embedded in soils are the skin friction between soil and reinforcement solid surface and the bearing resistance which develops against transversal elements. As regards bearing resistance the interference mechanism plays an important role: this can occur when the spacing between transversal members is lower than a threshold value, depending on the extensions of active and passive surfaces mobilized on bearing members.Based on the result of several large-scale pullout tests, a theoretical method to determine the peak pullout resistance of extruded geogrids embedded in a compacted granular soil is proposed. The method takes into account the interference mechanism due to the proximity of the transversal bearing members and works well for soil-geogrid interfaces in which scale effect is negligible.  相似文献   

15.
 通过室内大型拉拔试验设备,对土工格栅在8组不同含水量的红黏土中的拉拔特性进行系统测试。结果发现,土工格栅在黏性填料中主要表现为拔出破坏,含水量对于拉拔力的影响显著,拉拔极限荷载随含水量的增加逐渐降低,在塑限附近趋于一常数,且此时格栅与填料之间的似摩擦因数接近0。格栅的应变分布特征证明含水量的增加导致筋土摩擦力的显著减小。除了影响极限拉拔力,含水量还影响格栅的拉拔过程,它的增加使得格栅应变的线性增长结束后很快达到其极限承载力。  相似文献   

16.
文章基于离散元平台,开展了砾质土三轴排水试验的模拟,改进了交错式球颗粒柔性边界的构建方法和展卷式恒定水力围压的模拟方法。并针对不同砾石组构的三轴排水试验,采用颗粒流平台(PFC3D)分别建立了传统刚性边界和球颗粒柔性边界的三维离散元模型。从宏观破坏形态和微观力学性能、剪切带演化、边界处力链发展等对比研究边界模拟方法对模拟砾质土变形发展的影响。结果表明:刚性边界和柔性边界条件下,土试样破坏形态显著不同,前者呈现压塌式破坏形态,后者破坏时在试样内部形成一个非对称“X”形的条状剪切带,更接近于实际室内三轴剪切试验结果;柔性边界条件下边界处的力链分布均匀,强度均衡,而刚性边界条件下,边界处力链的演化过程中会出现明显的应力盲区和应力集中现象。结合宏微观分析可知,在离散元模拟中应采用柔性边界。  相似文献   

17.
The paper describes the interface behaviour of bottom ash, obtained from two thermal power plants, and geogrid for possible utilization as a reinforced fill material in reinforced soil structures. Pullout tests were conducted on polyester geogrid embedded in compacted bottom ash samples as per ASTM D6706-01. Locally available natural sand was used as a reference material. The pullout resistance offered by geogrid embedded in bottom ash was almost identical to that in sand. In order to study the influence of placement condition of the material on pullout resistance, test were conducted on uncompacted fill materials. Pullout resistance offered by geogrids embedded in uncompacted specimen reduced by 30–60% than that at the compacted condition.  相似文献   

18.
土工格栅与土相互作用的有限元分析   总被引:48,自引:2,他引:48       下载免费PDF全文
本文提出了土工格栅在拉拔状态下与土相互作用的有限元分析方法。土对格栅的阻力可用非线性弹簧来模拟,弹簧的非线性特性曲线可通过专门设计的小型拉拔试验槽来测定。简要介绍了威尔士大学按试行的欧洲标准研制的大型土工格栅拉拔试验设备。有限元分析结果与用该设备进行的试验结果有很好的一致性。  相似文献   

19.
This paper deals with some results of a wide experimental research carried out in order to study factors affecting cyclic and post-cyclic pullout behaviour of different geogrids embedded in a granular soil. The new test procedure developed (multistage pullout test) and the relative results are described. In particular, test results obtained using the constant rate of displacement (CRD) and the multistage pullout tests highlighted the influence of the different factors involved in the research (cyclic load amplitude and frequency, vertical confining stress, geogrid tensile stiffness and structure) both on the peak pullout resistance and on the peak apparent coefficient of friction mobilized at the interface.  相似文献   

20.
This paper presents an evaluation of the interlocking behaviour of geogrid-reinforced railway ballast. Experimental large box pull-out tests were conducted to examine the interaction between ballast and a biaxial geogrid. The discrete element method (DEM) was then used to model the interaction between the ballast and the geogrid by simulating large box pull-out tests and comparing the findings with the experimental results. Four different shapes of clumps were used to represent each ballast particle in order to obtain an acceptable shape for modelling the railway ballast. The DEM simulation results were shown to provide good predictions of the pull-out resistance and to examine the effect of clump shape on both the pull-out resistance and the distribution of contact forces. Therefore, the calibrated geogrid model and the 8-ball tetrahedral clumps, used as ballast particles, hold much promise for investigating the interaction between geogrids and ballast, and thus, optimising performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号