首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precast concrete, cold weather concreting, and the emerging technique of concrete additive manufacturing are applications in which the acceleration of cement hydration plays a critical role. To allow precise control of early cement hydration in these applications, a thorough understanding of the working mechanisms of cement hydration accelerators is required. This study contributes to the understanding of the mechanism by which calcium nitrate (Ca(NO3)2) influences early cement hydration. The influence of Ca(NO3)2 on the hydration of an ordinary Portland cement has been followed by isothermal calorimetry, in situ X-ray diffraction (XRD), quantitative XRD, compressive strength testing, and the analysis of the pore solution composition. Further, the initial pore solution, the initial phase composition, and the phase composition in the fully hydrated cement have been estimated by thermodynamic calculations to corroborate the experimentally obtained results. The results indicate that Ca(NO3)2, especially at the highest analyzed dosage of 5 wt.%, enhances the formation of ettringite and a nitrate-containing AFm phase. Furthermore, Ca(NO3)2 accelerates alite hydration. Besides the increased Ca concentration in solution, it has been found that a reduction of the Al concentration in the initial pore solution by Ca(NO3)2 possibly contributes to the accelerating effect of Ca(NO3)2 on alite hydration.  相似文献   

2.
Properties and hydration of blended cements with steelmaking slag   总被引:1,自引:0,他引:1  
The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the “0-5 mm”, due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C2S and its low content in calcium silicates.  相似文献   

3.
Potentiometric measurements on the molten salt concentration cell: Ag/AgNO3, KNO3Ba(NO3)2//AgNO3, KBr, KNO3Ba(NO3)2/Ag were carried out over a wide range of solute concentration and at temperatures in the range 350–410°C to study the association equilibria in dilute solutions of Ag+ and Br? in molten KNO3Ba(NO3)2(89:11 mole %). The results indicated formation of the species AgBr, AgBr?2; Ag2Br+ was not formed under the experimental conditions employed. The temperature-dependence of the association constants were, within limits of experimental precision, predictable from the quasi-lattice model.  相似文献   

4.
The hydration and the microstructure of three alkali activated slags (AAS) with MgO contents between 8 and 13 wt.% are investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na2SiO3·5H2O (WG). Higher MgO content of the slag resulted in a faster reaction and higher compressive strengths during the first days. The formation of C(− A)–S–H and of a hydrotalcite-like phase was observed in all samples by X-ray diffraction (XRD), thermal analysis (TGA) and scanning electron microscopy (SEM) techniques. Increasing the MgO content of the slag from 8 to 13% increased the amount of hydrotalcite and lowered the Al uptake by C–S–H resulting in 9% higher volume of the hydrates and a 50 to 80% increase of the compressive strength after 28 days and longer for WG activated slag pastes. For NaOH activated slags only a slight increase of the compressive strength was measured.  相似文献   

5.
Hydration of portland cement pastes containing three types of mineral additive; fly ash, ground-granulated slag, and silica fume was investigated using differential thermal analysis, thermogravimetric analysis (DTA/TGA) and isothermal calorimetry. It was shown that the chemically bound water obtained using DTA/TGA was proportional to heat of hydration and could be used as a measure of hydration. The weight loss due to Ca(OH)2 decomposition of hydration products by DTA/TGA could be used to quantify the pozzolan reaction. A new method based on the composition of a hydrating cement was proposed and used to determine the degree of hydration of blended cements and the degree of pozzolan reaction. The results obtained suggested that the reactions of blended cements were slower than portland cement, and that silica fume reacted earlier than fly ash and slag.  相似文献   

6.
This study investigates the effects of slag composition on the hydration activity of slag-blended cement (SBC) pastes. Synthetic slag samples were prepared by melting Al2O3-modified, municipal solid-waste incinerator (MSWI) fly ash. In addition to the original slag (containing 25.0% CaO and 17% Al2O3), two other synthetic slag types, A1 and A2 slag, were prepared, having a 15% or 5% Al2O3 content, respectively. These synthetic slags were blended with ordinary Portland cement (OPC) at weight ratios ranging from 10% to 40%. The results indicate that the incorporation of 10% A1 slag tended to enhance the degree of hydration in SBC pastes during the early ages (3-28 days), but at later ages, significant difference in the degree of hydration between the OPC and SBC pastes with 10% A1 slag was not observed. The tendency of the 10% A2 slag case was similar, but with a limited enhancement during the early ages (3-28 days). However, samples that incorporated the Al2O3-modified slag (AMS) showed decreased degrees of hydration. The degree of hydration of the 40% blend ratio sample decreased significantly.  相似文献   

7.
This paper reports the effect of elevated temperature exposures, up to 1200°C , on the residual compressive strengths of alkali‐activated slag concrete (AASC) activated by sodium silicate and hydrated lime; such temperatures can occur in a fire. The strength performance of AASC in the temperature range of 400–800°C was similar to ordinary Portland cement concrete and blended slag cement concrete, despite the finding that the AASC did not contain Ca(OH)2 , which contributes to the strength deterioration at elevated temperatures for Ordinary Portland Cement and blended slag cement concretes. Dilatometry studies showed that the alkali‐activated slag (AAS) paste had significantly higher thermal shrinkage than the other pastes while the basalt aggregate gradually expanded. This led to a higher thermal incompatibility between the AAS paste and aggregate compared with the other concretes. This is likely to be the governing factor behind the strength loss of AASC at elevated temperatures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The influence of various chlorides and potassium salts on the hydration of alite (3CaO·SiO2 solid solution) has been studied by conduction calorimetry and an explanation based on diffusion experiments in hardened Portland cement is presented. The mechanism of the action of inorganic electrolytes on cement hydration was also investigated. In hardened Portland cement the diffusion rate of the Cl? ion was greater than that of the coexisting cations. The accelerating effect of inorganic electrolytes was dependent mainly on the mobility of anions. The higher the anion mobility, the greater was the accelerating effect on the hydration. It is shown that the hydration of alite is a topochemical reaction and that the rate of hydration of alite is controlled by the rate of the dissolution of Ca2+ or OH? ions into a liquid phase. It is concluded that the dissolution of OH? ions from the hydrate layer around the cement particle is increased when the reciprocal diffusion action of the anion accelerates the hydration.  相似文献   

9.
This paper examines the early hydration of alkali-slag cements activated with water glass with different n moduli and sodium metasilicate (Na2SiO3·5H2O) in solution at 25 °C. The early hydration of alkali-activated blast furnace slag cements has been studied using isothermal conduction calorimetry. The cumulative heat of hydration increases by increasing the n modulus as well as the dosage of water glass, but is still lower than that of Portland cement. The compressive strength of normal-cured water glass slag cements is higher than Portland cement mortars. Drying shrinkage of alkali-slag cements is considerably higher than that of Portland cement. Consequently, industrial use of alkali-slag cement needs better understanding of the hardening mechanism and requires further research based on presented observations and results.  相似文献   

10.
This work is concerned with assessing the influence of natural pozzolan on the physical, mechanical and durability properties of blended Portland cement pastes. The results indicate that final setting times of natural pozzolan blended Portland cement pastes range from 4 to about 5 h. Naphthalene-type superplasticizer tends to retard the hydration process of plain and natural pozzolan blended Portland cement pastes. These blends show slightly higher setting times than those without superplasticizer. The use of superplasticizer is found to have a significant influence on the workability. At a lower level of Portland cement replacement by natural pozzolan, the addition of 1% superplasticizer by weight of blended Portland cement leads to a significant decrease in the water to Portland cement plus natural pozzolan ratio for a given workability. However, for the blended Portland cement with a high proportion of natural pozzolan, the increase in water content causes the porosity to increase with an accompanying decrease in compressive strengths. The variations in composition and cure time are found to provide significant changes in compressive strength. Depending on these parameters, the variation in compressive strength can be estimated by using the equation, σ=σ0/[1+exp(a+bp+cp2)]n, where σ is the compressive strength of natural pozzolan blended Portland cement paste at a given cure time and natural pozzolan replacement level (MPa); σ0 is the compressive strength of plain Portland cement pastes with or without superplasticizer at a given cure time (MPa); p is the natural pozzolan replacement level (%); a, b, c, n are the empirical constants to be determined. The blend with a composition of 80% Portland cement and 20% natural pozzolan and 1% superplasticizer provides superior strength and durability characteristics in comparison to the counterparts without superplasticizer and to the blends with a high proportion of natural pozzolan. At high contents of natural pozzolan, the resistance to freezing and thawing is found to be impaired. Moreover, these blended cements do not provide high durability performance against sulfate attack.  相似文献   

11.
Compressive strength and hydration characteristics of wastepaper sludge ash-ground granulated blastfurnace slag (WSA-GGBS) blended pastes were investigated at a water to binder (w/b) ratio of 0.5. The strength results are compared to those of normal Portland cement (PC) paste and relative strengths are reported. Early relative strengths (1 day) of WSA-GGBS pastes were very low but a marked gain in relative strength occurred between 1 and 7 days and this increased further after 28 and 90 days. For the 50% WSA-50% GGBS blended paste, the strength achieved at 90 days was nearly 50% of that of the PC control paste. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric (TG) analysis were carried out to identify the mineral components in the WSA and the hydration products of WSA and WSA-GGBS pastes. The principal crystalline components in the WSA are gehlenite, calcium oxide, bredigite and α′-C2S (stabilised with Al and Mg) together with small amounts of anorthite and calcium carbonate and traces of calcium hydroxide and quartz. The α′-C2S and bredigite, which phase separate from liquid phase that forms a glass on cooling, are difficult to distinguish by XRD. The hydration products identified in WSA paste are CH, C4AH13, C3A.0.5CC?.0.5CH.H11.5 and C-S-H gel plus possible evidence of small amounts of C2ASH8 and C3A.3CS?.H32. Based upon the findings, a hydration mechanism is presented, and a model is proposed to explain the observed strength development.  相似文献   

12.
Understanding the mechanisms controlling the early (fresh) and long-term (hardened) hydration of one-part alkali-activated slags (AAS) is key to extend their use as low CO2 substitutes for ordinary Portland cement (OPC). Their “just add water” use makes them easier and less hazardous to manipulate than the more studied two-part ones. This is due to the absence of liquid alkaline activators, which are environmentally and energy demanding. In this work, numerous experimental techniques have been linked to obtain a comprehensive physico-chemical characterization of a one-part AAS activated with Na2CO3 and Ca(OH)2 powders at several water to solid ratios (w/s). Calorimetry and pH/conductivity measurements describe the functioning of the activators immediately after contact with water. Early reactivity is characterized through in situ X-ray powder diffraction (XRPD) and small amplitude oscillatory shear (SAOS) rheology, which reveal a rapid precipitation of nanometric hydration products (nano-C-A-S-H), which results in a continuous increase in the paste cohesivity until setting. Moreover, SAOS shows that rejuvenating the paste by means of shearing (performed externally to the rheometer in this study) is enough to restore the initial cohesion (i.e., workability) for long time spans until setting occurs. The long-term hydration is characterized by ex situ XRPD on aged AAS pastes, in parallel with mechanical testing on AAS mortar. A correlation can be observed between the amount of nano-C-A-S-H and the increase in compressive strength. Overall, this formulation shows satisfactory fresh and solid properties, demonstrating suitability for low- and normal-strength applications.  相似文献   

13.
Addition of pure calcium silicate hydrate (C–S–H) to alkali-activated slag (AAS) paste resulted in an earlier and larger hydration rate peak measured with isothermal calorimetry and a much higher compressive strength after 1 d of curing. This is attributed to a nucleation seeding effect, as was previously established for Portland cement and tricalcium silicate pastes. The acceleration of AAS hydration by seeding indicates that the early hydration rate is controlled by nucleation and growth. For the experiments reported here, the effect of C–S–H seed on the strength development of AAS paste between 1 d and 14 d of curing depended strongly on the curing method. With sealed curing the strength continued to increase, but with underwater curing the strength decreased due to cracking. This cracking is attributed to differential stresses arising from chemical and autogenous shrinkage. Similar experiments were also performed on Portland cement paste.  相似文献   

14.
Solution analysis, calorimetry and electron microscopy have been used to study the retarding effect of Pb(NO3)2 admixtures on the early stages of hydration of Portland cement. Analyses of cement filtrates show rapid precipitation of basic lead compounds incorporating nitrate and sulphate. The precipitation is accompanied by an increase in the early heat liberation followed by a longer term retardation. Microscopy shows that the precipitate is largely in colloidal gelatinous form and coats the surfaces of the cement grains. The protective effect of these coatings is clearly responsible for the inhibition of hydration.  相似文献   

15.
Recently, the heat release during cement hydration and the so-caused temperature rise was exploited for (i) identification of material properties of early-age cement-based materials (stiffness, strength), and (ii) determination of the diameter and the cement content of jet-grouted structures. In this paper, the underlying hydration model for determination of the heat release and its rate is refined for Ordinary Portland Cements (OPC) and extended towards blended cements. Hereby, the overall degree of hydration with one kinetic law is replaced by a multi-phase hydration model, taking the hydration kinetics of the main clinker phases into account. As regards blended cements, which are commonly used in engineering practice, the effect of slag hydration is incorporated into the presented multi-phase model. The developed hydration model for both plain and blended cement is validated by means of differential-calorimetry (DC) experiments.  相似文献   

16.
The effect of accelerators, and in particular lithium salts and citric acid solutions, on the setting time of high alumina cement has been studied using calorimetry, solution analysis and X-ray diffraction techniques. Results are discussed with respect to the ternary CaOAl2O3H2O solubility diagram. It appears that there is a nucleation barrier to the precipitation of the main products of hydration, CAH10 and C2AH8 and that lithium salts function as accelerators by precipitation of a lithium aluminate hydrate which acts as a heterogenous nucleation substrate. It is suggested that retardation by citric acid is due to the precipitation of protective gel coatings around the cement grains which impede hydrolysis or inhibit growth of the hydration products.  相似文献   

17.
The physical and mechanical properties of Portland cement (PC) containing metakaolin (MK) or combination of MK and slag and the compatibility between such materials and superplasticizers were investigated in present study. After MK was incorporated into PC, the compressive strength of the blended cement was enhanced. However, the fluidity of MK blended cement became poorer than that of PC at the same dosage of superplasticizer and the same water/binder ratio. When both MK (10%) and ultra-fine slag (20% or 30%) were incorporated into PC together, not only the compressive strength of the blended cement was increased, but also the fluidity of the blended cement paste was improved comparing to MK blended cement. This indicates that ultra-fine slag can improve the physical and mechanical properties of MK blended cement. The physical and chemical effects of two mineral admixtures were also discussed.  相似文献   

18.
《Ceramics International》2022,48(20):30407-30417
Developing a low-cost and eco-friendly alternative to cement is of great significance for reducing CO2 emissions. Mine tailings (MTs) rich in Si and Al can be served as a promising precursor for geompolymer preparation only when the severe defect in the low reactivity is overcame. Alkali-hydrothermal activation technology was used to enhance the reactivity of MTs, and then activated tailings (ATs) and slag served as the precursors for the one-part geopolymer (OPG) preparation. Activation mechanism of MTs, workability, compressive strength, and hydration reactions of OPG samples were studied. The crystalline mineral phases in the MTs reacted with NaOH to form the amorphous sodium aluminosilicate, thus increasing the amorphization degree. High NaOH content favored the MTs activation, and the ATs with high NaOH content tended to create a higher initial pH and release more active species (Si and Al) for the slag hydration. The increase of NaOH content shortened the setting time, decreased the fluidity, and increased the strength of OPG samples. This was because the duration of the induction period was shortened and the hydration rate in the acceleration period of OPG samples was improved with increasing NaOH content, which generated large amounts of calcium–sodium aluminosilicate hydrate (C(N)-A-S-H) gel and yield the compact microstructure. However, excessive NaOH content resulted in a poor microstructure, and it is likely responsible for the reduction in strength.  相似文献   

19.
In this paper the effect of diatomite addition on blended cement properties and hydration was studied. Calcareous diatomaceous rocks of Zakynthos Island, Ionian Sea, containing mainly CaCO3 and amorphous silica of biogenic origin with the form of opal-A were used. Cement mortars and pastes, with 0%, 10%, 20% and 35% replacement of cement with the specific diatomite, were examined. Strength development, water demand and setting time were determined in all samples. In addition, XRD, SEM and weight loss at 350 °C were applied in order to study the hydration products and the hydration rate in the cement-diatomite pastes. Blended cements, having up to 10% diatomite content, develop the same compressive strength, as the corresponding Portland cement, while the presence of diatomite leads to an increase of the paste water demand. Diatomite is characterized as natural pozzolana, as it satisfies the requirements of EN 197 1 concerning the active silica content. The pozzolanic nature of the diatomite results to the formation of higher amounts of hydrated products, specifically at the age of 28 days.  相似文献   

20.
Blended cements prepared with two fly ashes were used as matrices in glass fiber reinforced cement (GRC) composites in an attempt to improve their durability. The hydrated matrices from the two blended cements investigated here had similar strength and composition. Both fly ashes reduced the Ca(OH)2 content to the same extent but in both cases the pH level was only slightly reduced compared to the portland cement matrix. In spite of these similarities, the GRC prepared with one fly ash showed considerable improvement in durability while the other one had only a small positive effect. SEM observations indicated that the improved durability in one case was associated with modification in the microstructure of the hydration products deposited in between the glass filaments, resulting in a much more open structure compared to that of portland cement matrix or the other blended cement. It is therefore suggested that the potential of the blended cement matrix to improve the durability of GRC is associated with its ability to modify the microstructure of the paste at the glass interface. This characteristic is not necessarily related to the overall composition of the blended cement matrix and to the reactivity of fly ash with Ca(OH)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号