首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of advanced pulse power capacitors strongly depends on the fabrication of high-performance energy storage ceramics. However, the low recoverable energy storage density (Wrec) and energy efficiency (η) become the key links limiting the development of energy storage capacitors. In this work, a high Wrec of ~5.57 J cm?3 and a large η of ~85.6% are simultaneously realized in BaTiO3-based relaxor ceramics via multi-dimensional collaborative design, which are mainly attributed to the ferroelectric-relaxor transition, enhanced polarization, improved breakdown electric field, and delayed polarization saturation. Furthermore, the excellent temperature stability (ΔWrec < ± 5%, 25–140 °C), frequency stability (ΔWrec < ± 5%, 1–200 Hz), and outstanding charge/discharge performance (current density ~1583.3 A cm?2, power density ~190.0 MW cm?3) with good thermal stability are also achieved. It is encouraging that this work demonstrates that multi-dimensional collaborative design is a good strategy to develop new high-performance lead-free materials used in advanced dielectric capacitors.  相似文献   

2.
《Ceramics International》2020,46(8):11549-11555
BiFeO3–BaTiO3 (BF-BT)-based lead-free ferroelectric ceramic has attracted immense interest in energy storage applications due to its great spontaneous polarization (Pmax) strength. However, high remanent polarization (Pr) has become a serious obstruction for its practical application. In this work, Sm ions were doped into 0.67BiFeO3-0.33BaTiO3 (0.67Bi1-xSmxFeO3-0.33BaTiO3, BSxF-BT) to tailor the structure and energy storage properties. It was found that the doping of Sm ions effectively reduced Pr by enhancing the relaxor behavior of BF-BT ceramic, which produce an enhancement in the energy storage performance. Large recoverable energy storage density Wrec of 2.8 J/cm3 with moderate energy storage efficiency η of 55.8% (200 kV/cm) were achieved in the ceramics with x = 0.1. Moreover, the energy storage capabilities exhibited good stability at temperature (20–95 °C) and frequency (0.1–50 Hz). Furthermore, the ceramic also possessed a predominant discharge speed with a discharge time less than 0.1 μs in a circuit with a load of 200 Ω. These results showed that the Wrec and η of BF-BT ceramic could be availably promoted by the doping of Sm ions, which may be helpful for the enhancement of energy storage performance of BF-BT-based ceramics.  相似文献   

3.
《Ceramics International》2022,48(12):17359-17368
In this work, 0.7BaTiO3-0.3Sr0.2Bi0.7TiO3 (0.7BT-0.3SBT) ceramics with 0.15 mol% various rare-earth oxides doped are designed and synthesized by the conventional solid-state route. All prepared samples exhibited a single perovskite phase and dense microstructure with fine grain size (0.2–0.5 μm) after sintering at 1180 °C. Especially, the Gd-doped 0.7BT-0.3SBT ceramics exhibited excellent energy storage performances; the corresponding recoverable energy density and efficiency were 3.2 J/cm3 and 91.5% under an electric field of 330 kV/cm, respectively. Meanwhile, doping with Gd caused the BT-based ceramics to possess excellent temperature (30–150 °C) and outstanding frequency stabilities (10–1000 Hz). Moreover, the pulsed charge-discharge experiments revealed that a high power density of 59 MW/cm3 and a fast discharge speed of 110 ns with outstanding temperature stability could be synchronously obtained in the Gd-doped composition. All these features are attractive for pulsed power applications.  相似文献   

4.
It is a grand challenge to achieve high energy density (W) and efficiency (η) simultaneously under a low electric field (LE) to obtain new high energy storage capacitors. Similar to anti-ferroelectrics, the (1-x)NBT-xBaMg1/3Nb2/3O3 relaxor material exhibits a non-linear dependence on electric field, which is caused by a reversible field-induced phase transition. This leads to high W (2.37 J/cm3) and η (81.5 %) under a LE of 155 kV/cm, which makes it superior to other bulk ceramics. Combining large polarizability of Ba2+ in A-site and local structural heterogeneity on the B-site by Mg1/3Nb2/34+, enhanced relaxor behavior and decreased polar-structure size were induced in (1-x)NBT-xBaMg1/3Nb2/3O3 ceramics. The permittivity, nevertheless, stays high at ~2273±15 %. Furthermore, the electrical properties become stable in a wide temperature range from 44?396 °C for the sample with x=0.15. In addition, high current density/CD (450 A/cm2), power density/PD (23 MW/cm3) and discharge density/WD (0.57 J/cm3) were realized tested with pulse discharge testing. Our work will provide a development guidance for dielectric energy storage ceramics at low field and high fields with excellent temperature stability.  相似文献   

5.
《Ceramics International》2022,48(24):36478-36489
Recently, BaTiO3-BiMeO3 ceramics have garnered focused research attention due to their outstanding performance, such as thermal stability, energy efficiency and rapid charge-discharge behavior, however, a lower recoverable energy storage density (Wrec) caused by a relatively low Pmax (<30 μC/cm2) mainly hinders practical applications. Herein, the energy density and thermal stability are improved by adding a tertiary component, i.e., Bi0.5Na0.5TiO3, into BaTiO3-BiMeO3, resulting in xBi0.5Na0.5TiO3-modified 0.88BaTiO3-0.12Bi(Zn2/3Nb1/3)O3 ceramics, with x = 0, 0.1, 0.2, 0.3 and 0.4, with superior dielectric properties and eco-friendly impact. Incorporating Bi0.5Na0.5TiO3 with a high saturation polarization and Curie temperature not only significantly enhances Pmax of BaTiO3-Bi(Zn2/3Nb1/3)O3 but also improves Curie temperature of (1-x)[0.88BaTiO3-0.12Bi(Zn2/3Nb1/3)O3]-xBi0.5Na0.5TiO3 system. Combined with complementary advantages, modified ceramics render a superior energy storage performance (ESP) with a high Wrec of 3.82 J/cm3, efficiency η of 94.4% and prominent temperature tolerance of 25–200 °C at x = 0.3. Moreover, this ceramic exhibit excellent pulse performance, realizing discharge energy storage density Wdis of 2.31 J/cm3 and t0.9 of 244 ns. Overall, the proposed strategy effectively improved comprehensive properties of BaTiO3-based ceramics, showing promise in next-generation pulse applications.  相似文献   

6.
《Ceramics International》2022,48(21):31381-31388
Lead-free bulk ceramics for advanced pulse power capacitors possess low recoverable energy storage density (Wrec) under low electric field. Sodium bismuth titanate (Bi0.5Na0.5TiO3, BNT)-based ferroelectrics have attracted great attention due to their large maximum polarization (Pm) and high power density. The BNT-ST: xAlN ceramics are designed and fabricated to get high Wrec and large Pm under low electric field simultaneously. An excellent large Pm (49.04 μC/cm2) and Wrec (2.07 J/cm3) under low electric field (160 kV/cm) are acquired in BNT-ST: 0.1 wt% AlN. The domain structure evolution and polarization switching are investigated systematically using piezoresponse force microscopy (PFM). The introduction of AlN promotes the formation of thermal conductive network and the crystallization of ceramics, thus improving thermal stability and increasing Pm significantly. The higher density of domain walls and the larger negative built-in voltage may be beneficial to increase breakdown field strength (Eb), while the more 180° domains induce by electric field and the better domain switching behavior contribute to a significant increase in Pm. The enhanced Eb and super high Pm are favorable for obtaining high Wrec under low electric field which will boost the application of BNT-based ferroelectrics in advanced pulse power capacitors.  相似文献   

7.
BiFeO3-BaTiO3-based relaxor ferroelectric ceramic has attracted increasing attention for energy storage applications. However, simultaneously achieving high recoverable energy storage density (Wrec) and efficiency (η) under low electric field has been a longstanding drawback for their practical applications. Herein, a novel relaxor ferroelectric material was designed by introducing (Sr0.7Bi0.2)TiO3 (SBT) into the composition 0.67BiFeO3-0.33BaTiO3 (BF-BT-xSBT). A large Wrec of ∼2.40 J/cm3 and a high η of ∼90.4 % were simultaneously realized under a low electric field of 180 kV/cm, which is superior to that of most previously reported lead-free ceramics. Moreover, moderate temperature endurance and excellent frequency stability were also obtained. More importantly, this ceramic has a large discharge current density (∼289.18 A/cm2), a discharge power density (∼14.46 MW/cm3) and short discharge time (<0.25 μs). These results not only demonstrate superior potential in BF-BT-SBT ceramics, but also offer a new design to tune the energy storage performance of lead-free relaxor ferroelectric ceramics.  相似文献   

8.
Ideal relaxor antiferroelectrics (RAFEs) have high field-induced polarization, low remnant polarization and very slim hysteresis, which can generate high recoverable energy storage Wrec and high energy storage efficiency η, thus attracting much attention for energy storage applications. True RAFEs, on the other hand, are extremely rare, and the majority of them contain environmentally hazardous lead. In this work, we use a viscous polymer rolling process to synthesize a novel and eco-friendly 0.65Bi0.5Na0.4K0.1TiO3-0.35[2/3SrTiO3-1/3Bi(Mg2/3Nb1/3)O3] (BNKT-ST-BMN) dielectric material, which possesses a very typical RAFE-like characteristic. As a result, this material has a high Wrec of 4.43 J/cm3 and a η of 86% at an electric felid of 290 kV/cm, as well as a high thermal stability of Wrec (>3 J/cm3) over a wide range of 30–140 °C at 250 kV/cm. Our findings suggest that the BNKT-ST-BMN material could be a potential candidate for use in energy storage pulse capacitors.  相似文献   

9.
《Ceramics International》2023,49(12):19701-19707
It is difficult to obtain high polarization strength and high breakdown strength synchronously, resulting in the drawback of lower energy storage density, which inhibits commercial application of energy storage materials. We have successfully prepared (1-x)(0.93Bi0.5Na0.5TiO3-0.07CaSnO3)-xSrTiO3 (BNT–CS–xST) ceramics by solid-state method. The presence of polymorphic nanodomains and the large electric displacement generated by the high charge Sr2+-Sr2+ ion pairs help to delay saturation polarization (Pm ∼ 48.64 μC/cm2 at 315 kV/cm). In addition, the breakdown field strength (Eb) is increased by grain refinement and increasing the band gap. It is noteworthy that a high recoverable energy storage density (Wrec = 4.2 J/cm3) and a great efficiency (η = 88%) were achieved simultaneously in BNT–CS–0.5ST ceramic. Moreover, excellent charge-discharge performance was also achieved, with a discharge energy density Wd of 2.2 J/cm3, a current density CD of 1724 A/cm2 and a power density PD of 250 MW/cm3. The study demonstrates that the great potential of BNT–CS–xST ceramics in power storage devices and provides an effective strategy for designing ceramics dielectric capacitors with excellent performance.  相似文献   

10.
《Ceramics International》2023,49(1):801-807
The development of materials with high energy storage plays a crucial role in solving energy consumption. Traditional dielectric ceramics have the disadvantages of low energy storage and low efficiency. The most effective solution is to reduce the dielectric loss and increase the breakdown strength. In this paper, (Na0.73Bi0.08Sm0.01)(Nb0.91Ta0.09)O3 relaxor ferroelectric ceramics were prepared, which achieved a high energy storage density of 1.66 J cm?3, high efficiency (83.6%) at 214 kV/cm at room temperature. The addition of Bi2O3 makes the A site cations disordered, thereby generating random fields, breaking the long-range order, and forming polar nanodomains. That allows the ceramic to acquire relaxation properties, reducing the dielectric loss. The impedance analysis proves that the breakdown strength is related to the addition of Sm2O3. The addition of Sm reduces the oxygen vacancy defect concentration and inhibits the migration of carriers, thereby improving its breakdown strength. Through proper doping of Bi and Sm, the relaxation properties and breakdown field strength of the ceramics are enhanced to obtain excellent energy storage performance. This provides a new idea in terms of relaxation and oxygen vacancy defects for NaNbO3-based energy storage ceramics.  相似文献   

11.
《Ceramics International》2023,49(8):12214-12223
In recent years, “high-entropy” materials have attracted great attention in various fields due to their unique design concepts and crystal structures. The definition of high-entropy is also more diverse, gradually expanding from a single phase with an equal molar ratio to a multi-phase with a non-equimolar ratio. This study selected (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 high entropy ceramics with excellent relaxation behavior. The A-site elements are divided into (x = Na, Bi, Ba) and ((1-3x)/2 = Sr, Ca) according to their inherent properties. A novel ABO3 structural energy storage ceramics (NaBaBi)x(SrCa)(1-3x)/2TiO3 (x = 0.19, 0.195, 0.2, 0.205 and 0.21) was successfully fabricated using the high entropy design concept. The ferroelectric and dielectric properties of non-equimolar ratio high-entropy ceramics were studied in detail. It was found that the dielectric constant of ∼4920 and the recoverable energy storage density of 3.86 J/cm3 (at 335 kV/cm) can be achieved simultaneously at x = 0.205. The results indicate that the design concept of high-entropy materials with a non-equal molar ratio is an effective means to achieve distinguished energy storage performance in lead-free ceramics.  相似文献   

12.
13.
Lead-free NaNbO3 (NN) antiferroelectric ceramics provide superior energy storage performance and good temperature/frequency stability, which are solid candidates for dielectric capacitors in high power/pulse electronic power systems. However, their conversion of the antiferroelectric P phase to the ferroelectric Q phase at room temperature is always accompanied with large remnant polarization (Pr), which significantly reduces their effective energy storage density and efficiency. In this study, to optimize the energy storage properties, short-range antiferroelectric (0.95-x)NaNbO3-xBi(Mg2/3Nb1/3)O3-0.05CaZrO3 (xBMN) ceramics were designed to stabilize the antiferroelectric phase, in which the local random fields were simultaneously constructed. The results showed that the antiferroelectric orthorhombic P phase was transformed into the R phase, and the local short-range random fields were generated, which effectively inhibited the hysteresis loss and Pr. Of great interest is that the 0.12BMN ceramics displayed a large recoverable energy storage density (Wrec) of 5.9 J/cm3 and high efficiency (η) of 85% at the breakdown strength (Eb) of 640 kV/cm. The material also showed good frequency stability in the frequency range of 2–300 Hz, excellent temperature stability in the temperature range of 20–110 ℃, and a very short discharge time (t0.9∼4.92 μs). These results indicate that xBMN ceramics have great potential for advanced energy storage capacitor applications.  相似文献   

14.
The 0.63(1-x)Bi1.02FeO3-0.37BaTiO3-xBi(Zn2/3(Nb0.85Ta0.15)1/3)O3 (abbreviated BF-BT-xBZNT) high temperature dielectric ceramics were prepared via a two-step sintering (TTS) method. The appropriate medium permittivity achieved in the BF-BT-0.13BZNT ceramic is conducive to mitigating the polarization saturation and improving the breakdown field strength. The domain evolution behavior from piezoresponse force microscopy (PFM) reveals that the introduction of BZNT promotes the formation and switching of more nanodomains of BF-BT ceramics, facilitating the enhancement of energy storage efficiency. The excellent energy storage performance of total energy storage density (Wtot) of 6.06 J/cm3, recoverable energy storage density (Wrec) of 4.85 J/cm3 and a high energy storage efficiency (η) of 80% are simultaneously obtained under 410 kV/cm in the BF-BT-0.13BZNT ceramic. Meanwhile, the ceramic exhibits excellent thermal endurance (10–130 ℃), frequency (1–100 Hz) and fatigue (105 cycles) stability. The current work provides a promising strategy for designing high-performance dielectric energy storage materials which operate in harsh environments.  相似文献   

15.
《Ceramics International》2017,43(12):9060-9066
In this paper, we prepared lead-free (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O3 (x=0.04, 0.08, 0.10, and 0.14) ceramics by a conventional solid-state reaction technique. Pure perovskite structures and dense microstructures were demonstrated for all the compositions. Interestingly, it was found that the sintering temperature tended to decrease with increasing the Bi(Zn0.5Ti0.5)O3 content. It should be stressed that a low sintering temperature of 1050 °C was utilized for the composition of x=0.14. Moreover, the dielectric permittivity-temperature curve became more flat and the relaxor degree became stronger with the augment in Bi(Zn0.5Ti0.5)O3 content. We also conducted a detailed study on the energy storage performance for all the compositions from 25 °C to 180 °C.We found that relatively temperature-stable energy storage performance could be obtained in the compositions with x=0.08, 0.10 and 0.14 regardless of the evolution of dielectric constant during the test temperature range. In particular, due to a higher field of 12 MV m−1, the discharge energy storage densities of x=0.14 could reach 0.81 J cm−3, 0.80 J cm−3, 0.78 J cm−3, 0.72 J cm−3, and 0.67 J cm−3 with high efficiencies of 94%, 92%, 94%, 88% and 77% at 25 °C, 50 °C, 100 °C, 150 °C, and 180 °C, respectively. All these results demonstrate the (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O3 ceramics are quite promising for temperature-stable energy storage applications.  相似文献   

16.
Developed ceramic capacitors with excellent recoverable energy storage density (Wrec) and efficiency (η) are greatly desired for next-generation pulsed power devices but challenge as well. Herein, outstanding Wrec of 5.2 J/cm3 and η of 82% are achieved in the PbO-doped fine grain Bi0.25Na0.25Sr0.5TiO3 (BNST-P) based relaxor ferroelectric ceramics. The corresponding mechanism is that A-site Pb-doping increases maximum polarization and breakdown strength, and suppresses remnant polarization simultaneously. Meanwhile, the energy storage property possesses excellent temperature and frequency stability, and the variation of Wrec and η is less than 5% within the range of 25–100 °C and 2–100 Hz. Encouragingly, superior charge-discharge performance with fast discharge speed t0.9 of 24 ns and high power density PD of 296 MW/cm3 is obtained. These striking comprehensive results suggest BNST-P ceramics possess potential prospects for applications.  相似文献   

17.
Dielectric ceramics with relaxor characteristics are promising candidates to meet the demand for capacitors in next-generation pulse devices. In this work, Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT)-based lead-free ceramics with an ultrahigh recoverable energy storage density (Wrec) were designed and fabricated by introducing the relaxor end-member of Bi(Zn2/3Ta1/3)O3 (BZT). The addition of BZT disrupted the ferroelectric (FE) long-range order and triggered an FE-to-relaxor FE (RFE) phase, leading to the formation of locally polar nano-regions (PNRs) and significantly inhibiting grain growth. Meanwhile, the presence of PNRs with good thermal stability improved the temperature stability of both the dielectric constant (ε') and Wrec. More importantly, the breakdown electric field strength was significantly improved up to ∼640 kV/cm, resulting in an ultrahigh Wrec of ∼7.11 J/cm3 for the 8%BZT doped BCZT (BCZT-BZT8) ceramic. Furthermore, the BCZT-BZT8 ceramic exhibited excellent charge/discharge performances (CD ∼ 458.4 A/cm2, PD ∼ 50.4 MW/cm3, WD ∼ 1.354 J/cm3, t0.9 ∼ 320 ns) with good thermal stability in the temperature range of 298–373 K. The defect chemistry of the BCZT-BZT8 was explored using electron paramagnetic resonance (EPR) spectroscopy which revealed an EPR signal (g ∼ 1.955), associated with oxygen vacancies. The above findings indicate that the novel composition of BCZT-BZT8 has great prospects in energy storage capacitor applications.  相似文献   

18.
Dielectric capacitors have drawn increasing attention due to their fast charge/discharge rates and high power density. Among all known ceramic dielectric materials, antiferroelectrics are more attractive for their unique double ferroelectric hysteresis loops and higher energy densities. Here, a series of antiferroelectric ceramics x(0.95Bi0.5Na0.5TiO3-0.05SrZrO3)-(1-x)NaNbO3 (xBNTSZ-(1-x)NN, x = 0.23, 0.30, 0.35, 0.50) have been prepared. By stabilizing the antiferroelectric phase and postponing the critical electric field of the antiferroelectric-ferroelectric phase transition, an impressive discharge energy storage density of 4.08 J/cm3 at a breakdown strength of 370 kV/cm was achieved for the 0.35BNTSZ-0.65 N N. A superior comprehensive performance for the 0.50BNTSZ-0.50 N N ceramic with a discharge energy storage density (Wdis) of 3.78 J/cm3 and an efficiency of 86 % at an electric field strength of 320 kV/cm along with excellent frequency, temperature, and fatigue stabilities (fluctuations of Wdis≤±5% within 0.01∼100 Hz, Wdis≤10 % over 20∼140 °C, and Wdis≤1% over 106 cycle numbers) is realized. Furthermore, 0.50BNTSZ-0.50 N N ceramics simultaneously exhibit a high current density (622.5 A/cm2), high power density (112 MW/cm3), and fast discharge rate (t = 47 ns), all of which make it an excellent candidate for the pulsed power devices.  相似文献   

19.
Large energy storage density in relaxor ferroelectrics is commonly accompanied with high breakdown strength, which is adverse to the actual dielectric capacitor applications. We demonstrate that such drawback can be effectively resolved by using Sr0.7Bi0.2TiO3 (SBT) to partially replace relaxor ferroelectric 0.76(Bi0.5Na0.5)TiO3-0.24NaNbO3 (BNT-NN-xSBT). In this study, a high recoverable energy storage density (Wrec∼3.12 J/cm3) and favorable efficiency (η∼75.3 %) are achieved in the BNT-NN-0.1SBT ceramic under a low electric field of 200 kV/cm, which is superior to that of most previously reported dielectric ceramics under the same electric field level. Good temperature stability (25−120 °C), moderate frequency dependence (1−500 Hz), and excellent fatigue resistance (up to 105 cycles) are also realized. More interestingly, the indicated ceramics perform high power density (PD∼36.40 MW/cm3) and fast discharge time (t0.9∼0.149 μs) with remarkable temperature endurance. Moreover, of particular significance is that this study offers a feasible guideline to design comprehensive energy storage performance dielectric ceramics for practical applications.  相似文献   

20.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号