首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2020,46(12):20291-20298
BiYO3 powders were synthesized by the Pechini method under low-temperature conditions. When the heat treatment was performed at T < 600 °C, a mixture of tetragonal and cubic phases was obtained, while for T ≥ 600 °C, only the fluorite-like cubic phase was observed. Based on the Rietveld refinement, approximately 2% and 1% of the tetragonal phase remained in samples calcined at 400 °C and 500 °C for 1 h, respectively. The crystal size calculated for these samples was 4.4–48.1 nm, depending on the calcination temperature. The specific surface area of the samples diminished with heat treatment and reached a minimum at 800 °C. The band gap of samples with mixed phases was close to 2.16 eV and was ~2 eV for samples with a cubic phase. Photocatalytic tests demonstrate that BiY0.995Ni0.005O3 calcined at 800 °C had the best performance: it degraded more than 80% of the antibiotic oxytetracycline when irradiated with visible light. The Ni-doped BiYO3 material could degrade the antibiotic in tap water at an environmentally relevant concentration (μg L−1 levels) and showed steady activity throughout four reaction cycles.  相似文献   

2.
This work described the acquisition of immobilized ZnO semiconductors using the slip casting technique, for application as reusable photocatalysts in the degradation of Rhodamine B. The influence of the heat treatment temperature (800°C, 900°C, and 1000°C) on the physical, thermal, microstructural, and photocatalytic properties was investigated. All samples presented the wurtzite crystal structure, and the surface was completely absent of organic matter residues. The samples presented band gap values around 3.2 eV. The ones heat treated at 800°C showed lower density (3.40 g/cm3, corresponding to 60% of the ZnO theoretical density), smaller average grain size, in addition to higher apparent porosity (around 40%). These characteristics provide better photocatalytic activity to the sample heat treated at 800°C, since it promoted 92.2% dye degradation, while samples heat treated at 900°C and 1000°C promoted 81.8% and 54.2% dye degradation, respectively. The integrity of all samples was maintained after the photocatalytic tests. Thus, the reuse capability of the sample with the best photocatalytic performance, that is, the sample heat treated at 800°C, was evaluated in six cycles of photocatalysis. The sample proved to be reusable, promoting degradation of practically 100% of the dye after the third cycle of reuse.  相似文献   

3.
A facile method to prepare nanoscaled BaFe0.5Nb0.5O3 via synthesis in boiling NaOH solution is described herein. The nano-crystalline powder has a high specific surface area of 55 m2 g−1 and a crystallite size of 15 nm. The as-prepared powder does not show any significant crystallite growth up to 700 °C. The activation energy of the crystallite growth process was calculated as 590 kJ mol−1. Dense ceramics can be obtained either after sintering at 1200 °C for 1 h or after two-step sintering at 1000 °C for 10 h. The average grain sizes of ceramic bodies can be tuned between 0.23 μm and 12 μm. The thermal expansion coefficient was determined as 11.4(3)·10−6 K−1. The optical band gap varies between 2.90(5) and 2.63(3) eV. Magnetic measurements gave a Néel temperature of 20 K. Depending on the sintering regime, the ceramic samples reach permittivity values between 2800 and 137,000 at RT and 1 kHz.  相似文献   

4.
《Catalysis communications》2007,8(11):1659-1664
Co–Al mixed oxides (CAO) was prepared by co-precipitation method from hydrotalcites (HT) as precursors, and their catalytic activity was investigated for the simultaneously catalytic removal of NOx and diesel soot particulates by the temperature-programmed reaction (TPR) technique. All HT samples present well crystallized, layered structures, no excess phases were detected. A nonstoichiometric spinel phase was formed by calcining the CAO at 500 °C and 800 °C, irrespective of the Co/Al ratio. Both the activity of soot oxidation and the selectivity to N2 formation of CAO catalysts calcined at 800 °C were higher than that at 500 °C. The observed difference in the catalytic performance was related to the redox properties of the catalysts and the crystallite size of HT precursors. The active species might come from Co3O4, which acted for redox-type mechanism for soot oxidation in the NOx-soot reaction.  相似文献   

5.
《Ceramics International》2020,46(15):24147-24154
Aluminum-gallium oxide (AGO) films on c-plane sapphire substrates by pulsed laser deposition are described. Both nitrogen and oxygen annealing effects on the structural and optical properties of AGO films are investigated. The AGO film shows an amorphous structure when deposited at low temperatures (≤400 °C) while a crystalline structure at 800 °C. After post annealing at 900 °C, an amorphous-to-crystalline phase transformation for the 400°C-deposited film occurs and shows the preferred β phase. The corresponding optical bandgap also increases from 5.14 eV to 5.41–5.46 eV depending on the annealing ambience. From Raman measurements, the 800°C-deposited AGO sample possesses a more stable O–Ga–O bonding compared to that of the 400°C-deposited one after annealing. Unusually, an evident increase in the nitrogen content is observed for the samples after post annealing at 900 °C in nitrogen atmosphere. The rapid dissociation of oxygen atoms may accelerate the disintegration of crystals and rearrangement, which makes the AGO film adsorb nitrogen atoms and cause the grain size to be significantly reduced. However, the extent of the nitrogen incorporation seems to have no apparent effect on the optical properties. All the AGO films show the optical transmittance over 80% in the ultraviolet–visible region with the calculated bandgaps more than 5.4 eV. Details of the mechanism about the nitrogen incorporation into the annealed AGO films via the oxygen vacancies or micro-pores will be discussed.  相似文献   

6.
Heterogeneous photocatalysis can be exploited for the decomposition of micro-organisms which have developed on the surfaces of building materials. In this work, the efficiency of titanium dioxide coatings on fired clay products is examined. The sol–gel method is used to synthesize a fine TiO2 powder with a specific surface area of 180 m2 g?1. Thermal treatment of the chemical gel at 340 °C leads to crystallisation in the anatase phase and with further temperature increase, crystallite growth. For thermal treatments in the range 580–800 °C, there is a progressive transition from anatase to rutile. However, despite a decrease in specific surface area of the powder attributed to aggregation/agglomeration, the coherent domain size deduced from X-ray diffraction measurements remains almost constant at 23 nm. Once the transition is completed, increase of thermal treatment temperature above 800 °C leads to further crystallite growth in the rutile phase. The thermally treated titania powders were then sprayed onto fired clay substrates and the photocatalytic activity was assessed by the aptitude of the coating to degrade methylene blue when exposed to ultraviolet light. These tests revealed that the crystallite size is the important controlling factor for photocatalytic activity rather than the powder specific surface area or the anatase/rutile polymorph ratio.  相似文献   

7.
Au/SnO2 quantum dots (AuSQDs) were synthesized, and the effects of annealing on their structural and optical properties were examined. Significant changes were observed in the bandgap and surface plasmon resonance (SPR) of the AuSQDs after thermal treatment at different temperatures (400, 500, and 600 °C). The properties of the as-prepared and annealed samples were characterized via X-ray diffraction analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy, and diffuse reflectance spectroscopy. Annealing reduced the bandgap from 3.03 to 2.33 eV and increased the crystallinity while maintaining an average crystallite size below 10 nm. XPS valence band (VB) profiles provided information regarding the VB edge potentials, which helped to determine the conduction band edge potentials. An enhancement in the SPR of the Au nanoparticles was observed for AuSQD-500, which had the smallest bandgap among the samples investigated.  相似文献   

8.
(K0.5Na0.5)NbO3 (KNN) thin films have been deposited onto Pt/Ti/SiO2/Si and quartz substrates by RF magnetron sputtering. The films were deposited at 400°C with the variation in oxygen mixing percentage (OMP) ratio from 0% to 100% and annealed at 700°C in oxygen atmosphere. The crystallinity of the films is found to be increased with increased OMP. Dielectric properties of the films were examined over the frequency range from 1 kHz to 1 MHz and the temperature range of 30°C to 400°C. The Curie temperature of the films was found to be in the range 369°C–373°C. For the first time, the split postdielectric resonator (SPDR) method was used to measure the microwave (10–20 GHz) dielectric properties of KNN thin films. The optical properties of as‐deposited and annealed KNN thin films were investigated by means of transmittance spectra. The optical bandgap is calculated by using the Tauc relation, and found to be in the range 4.34–4.40 eV and 4.29–4.37 eV for the as‐deposited and annealed films, respectively. The refractive index (n700nm) of the films found to be in the range 1.98–2.01 and 1.99–2.07 for as‐deposited and annealed films, respectively. The refractive index dispersion is analyzed by using Wemple–DiDomenico (W–D) single‐oscillator model. The effect of annealing and OMP on the refractive index, packing density and W–D parameters has been investigated. The average single oscillator energy (Eo) and dispersion energies (Ed) of the annealed KNN thin films are in the range of 6.17–7.16 eV and 18.77–22.19 eV, respectively. AC‐conductivity of the annealed films was analyzed by using double power law. Ag/KNN/Pt thin films followed the ohmic conduction (J ∝ Eα, where α ~1) and the low leakage current density obtained for the deposited at 100% O2 is 3.14 × 10?5 A/cm2 at 50 kV/cm.  相似文献   

9.
The influence of post thermal treatment at (500,600,700, and 800 °C) of cathodic arc physical vapor deposited TiN coated Ti6Al4V (Ti64) alloy was studied for orthopedic uses. The structure, surface characteristics, mechanical properties of coated and treated samples was investigated using XRD, FESEM/EDX, XPS, AFM, and micro indentation. The influence of post heat treatment on the in vitro corrosion-resistant behavior in a physiological medium was assessed by linear polarization, electrochemical frequency modulation, and impedance spectroscopic measurements. The results showed that a TiN layer of 5 ± 0.15 μm was formed over Ti64 alloy with higher microhardness and modulus compared to the bare substrate. The rutile TiO2 oxide phase begins to form with the TiN at 500 °C, the TiO2 phase intensity increased with the temperature, and the TiO2 upper layer over the TiN film was formed at 700 and 800 °C. The microhardness and modulus were increased at 500 °C due to enhanced crystallinity of TiN, then decreased with increasing the temperature due to the internal stress relaxation of TiN and formation of the TiO2 phase. The treated samples showed higher resistance to plastic deformation compared to the TiN coated and uncoated alloy. The sample treated at 500 °C showed the highest hardness, modulus, and resistance to plastic deformation. The obtained in vitro corrosion results indicated that post thermal treatment improves the corrosion resistance of TiN coated.  相似文献   

10.
《Ceramics International》2022,48(17):24666-24676
The formation mechanism of hydrolytic sol-gel synthesized DyCrO4 with a complexing agent in acidic and basic mediums is thoroughly studied. The role of complexing agents and pH on phase formation temperature is also intensively investigated. The formation temperature for DyCrO4 is ~500 °C in the absence and presence of complexing agents such as oxalic acid and ethylenediaminetetraacetic acid (EDTA) at pH 10. When critic acid is used, the DyCrO4 forms with Cr2O3 impurity. The crystallite size in the presence of a complexing agent in the basic medium is ~55 nm which is small as compared to only ammonia solution. The various reaction modes lead to tetragonal zircon-type DyCrO4 at ~500 °C, transforming into orthorhombic perovskite DyCrO3 at 800 °C. The magnetization curve shows the ferromagnetic behavior of DyCrO4 below transition temperature Tc ~21 K. This low Tc makes nanocrystalline DyCrO4 a potential material for cryogenic applications.  相似文献   

11.
Magnesium ferrite (MgFe2O4) nanostructures were successfully fabricated by electrospinning method. X-ray diffraction, FT-IR, scanning electron microscopy, and transmission electron microscopy revealed that calcination of the as-spun MgFe2O4/poly(vinyl pyrrolidone) (PVP) composite nanofibers at 500–800 °C in air for 2 h resulted in well-developed spinel MgFe2O4 nanostuctures. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. Crystallite size of the nanoparticles contained in nanofibers increased from 15 ± 4 to 24 ± 3 nm when calcination temperature was increased from 500 to 800 °C. Room temperature magnetization results showed a ferromagnetic behavior of the calcined MgFe2O4/PVP composite nanofibers, having their specific saturation magnetization (M s) values of 17.0, 20.7, 25.7, and 31.1 emu/g at 10 Oe for the samples calcined at 500, 600, 700, and 800 °C, respectively. It is found that the increase in the tendency of M s is consistent with the enhancement of crystallinity, and the values of M s for the MgFe2O4 samples were observed to increase with increasing crystallite size.  相似文献   

12.
《Ceramics International》2019,45(11):13628-13636
Catalysts based on the combination of zinc oxide and copper oxide were synthesized at a 80:20 mass ratio by the Pechini method and calcined at 500, 600 and 700 °C for 1 h. These catalysts were characterized by XRD, SEM, FT-IR, BET, UV-Vis, TGA and XRF. They were subsequently tested for the removal of methylene blue dye by means of heterogeneous catalysis combined with solar radiation through a RCCD experimental design, analyzing the concentrations of H2O2 and methylene blue, as well as radiation exposure time and pH. The average crystallite size obtained was of 26.21, 28.21 and 35.91 nm for the respective calcined samples. The XRF was effective in determining the elements present in the catalyst, consisting of 75% zinc oxide and 25% copper oxide. The values of surface area were of 7.54, 7.19 and 3.92 m2/g, respectively. The experimental design showed that the catalyst calcined at 500 °C exhibited the highest removal efficiency (93%) of methylene blue with a dye concentration of 20 mg/L. Despite the need to carry out new studies to optimize the process, results suggest that the application of solar photocatalysis in the treatment of methylene blue with ZnO/CuO is a feasible alternative.  相似文献   

13.
Mg0.5Cu0.05Zn0.45Fe2O4 nanoparticles were prepared through sol–gel method using polyvinyl alcohol as a chelating agent. The as prepared sample was annealed at three different temperatures (500 °C, 700 °C and 900 °C). The phase formation, morphology and magnetic properties with respect to annealing temperature were studied using the characterisation techniques like X-ray diffraction (XRD) as well as Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM), respectively. The crystallite size and magnetisation showed increasing trend with annealing temperature. The coercivity increased up to a particular annealing temperature and decreased thereafter, indicating transition from single domain to multi domain state with increasing annealing temperature. Further, to know the suitability of the material, as a ferrite core, in multilayer chip inductors, the powder sample annealed at 500 °C was compacted in the form of torroids and sintered at three different temperatures (800 °C, 900 °C and 950 °C). The permeability showed increasing trend with the increase of sintering temperature since the permeability depends on microstructure. The frequency dispersion of permeability, for the sintered samples, demonstrated high frequency stability as well as high operating frequency. The cut-off frequency for the sintered samples 800 °C, 900 °C and 950 °C is 32 MHz, 30.8 MHz and 30.4 MHz, respectively.  相似文献   

14.
The processing and characterisation of Pb(Mg1/3Nb2/3)O3 (PMN) materials, obtained either by spray-drying the solution of the precursors or by the conventional “columbite” method, were investigated and the morphological and micro-structural characteristics were compared. The acid solution of ammonium-peroxo-niobium complex, magnesium and lead nitrates was spray-dried and the precursor powder obtained was calcined at different temperatures ranging from 350 to 900 °C. The morphologies and the XRD patterns of the powders were compared. The calcined powders exhibited a pyrochlore phase above 400 °C converting into an almost pure perovskite phase at 800 °C. The powder calcined at 350, 500 and 800 °C were sintered at different temperatures, ranging from 950 to 1150 °C, always resulting in a pure perovskite PMN material. The XRD patterns of as-fired surfaces of samples sintered at 950 and 1050 °C showed an unwanted PbO phase together with the main PMN, nevertheless this secondary phase is not present in the ground surfaces. The high reactivity of sprayed powder is reflected in the formation and densification of pure perovskite PMN material with a faster process as regards the conventional one; in particular samples of about 96% theoretical density were obtained starting from the amorphous powder calcined at low temperature (350 °C) through a reaction sintering process. Furthermore, due to the better flowability of the spray-dried powder, the cold consolidation process is highly improved and no binder addition to powder is necessary.  相似文献   

15.
This study reports the magnetic and cytotoxicity properties of magnetic nanoparticles of La1−x Sr x MnO3 (LSMO) with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 by a simple thermal decomposition method by using acetate salts of La, Sr, and Mn as starting materials in aqueous solution. To obtain the LSMO nanoparticles, thermal decomposition of the precursor was carried out at the temperatures of 600, 700, 800, and 900 °C for 6 h. The synthesized LSMO nanoparticles were characterized by XRD, FT-IR, TEM, and SEM. Structural characterization shows that the prepared particles consist of two phases of LaMnO3 (LMO) and LSMO with crystallite sizes ranging from 20 nm to 87 nm. All the prepared samples have a perovskite structure with transformation from cubic to rhombohedral at thermal decomposition temperature higher than 900 °C in LSMO samples of x ≤ 0.3. Basic magnetic characteristics such as saturated magnetization (M S) and coercive field (H C) were evaluated by vibrating sample magnetometry at room temperature (20 °C). The samples show paramagnetic behavior for all the samples with x = 0 or LMO, and a superparamagnetic behavior for the other samples having M S values of ~20–47 emu/g and the H C values of ~10–40 Oe, depending on the crystallite size and thermal decomposition temperature. Cytotoxicity of the synthesized LSMO nanoparticles was also evaluated with NIH 3T3 cells and the result shows that the synthesized nanoparticles were not toxic to the cells as determined from cell viability in response to the liquid extract of LSMO nanoparticles.  相似文献   

16.
Zn0.94Cu0.04Cr0.02O nanoparticles have been synthesized by sol–gel method and annealed at 400, 600 and 800 °C. Hexagonal wurtzite structure was not affected by the temperature but single phase was altered by high temperature (800 °C). The reduced crystallite size (19.9 nm) at 600 °C was due to the proper substitution of doping element. The enhanced crystallite size at 800 °C was due to the formation secondary phase like CuO and defect states. The broad absorption peak at 800 °C around visible region represented the oxygen related defects and Cu/Cr interstitials. The red shift of band gap and enhanced visible light absorption are useful for solar applications. Better antibacterial efficiency of nanoparticles annealed at 600 °C was due to increase of surface area by reduced particle size and modification in morphology.  相似文献   

17.
《Ceramics International》2022,48(22):33389-33399
Double perovskite Bi2Ca2-xCexCoO6; x = 0.00, 0.05, 0.10 and 0.15 (BCCCO) is synthesized by co-precipitation route. X-ray diffraction (XRD) confirms the monoclinic single-phase crystal structure with negligible variation in unit cell parameters, indicating that the Cerium (Ce) has been successfully incorporated. With Ce doping, the average crystallite size of Bi2Ca2CoO6 (BCCO) nanoparticles decreases. Scherrer's formula was used to determine the crystallite sizes (33–37 nm) of BCCO nanoparticles. Jonscher's power law is used to investigate the conduction mechanism of all the prepared specimens. The power-law specifies the correlated barrier hopping for BCCCO x = 0.00 and 0.05, short polaron tunneling for x = 0.10, while BCCCO x = 0.15 follows overlapping large polaron tunneling. The dielectric permittivity has been calculated with a frequency range of 20 Hz - 3 MHz, and the Ce doped samples show a high value of dielectric permittivity εr = 1.79 × 105 at 500 °C. The influence of crystallite size on the dielectric permittivity of BCCCO was examined in this work. The relaxation time and spreading factor of all samples are investigated using Non-linear Debye's function. All these features are studied as a function of frequency at temperatures ranging from 100 to 500 °C. Here, the DC electrical conductivity of BCCCO is investigated by the four-probe method at 50–400 °C. In Ce-doped specimen the lowest value of thermal conductivity (k = 0.797 W/m-K at 120 °C) has been observed.  相似文献   

18.
A new AgO.CuO.WO3/rGO nanocomposite was designed for the investigation of the degradation ability of the hybrid material under visible light irradiation. The AgO, CuO, WO3 NPs, and AgO.CuO.WO3 hetero-metallic oxides were fabricated via the chemical co-precipitation method. The crystallite sizes and phase analyses were investigated by recording X-ray diffraction patterns. The crystallite sizes of three metal oxides in the AgO.CuO.WO3 hetero metal oxide were 16.7, 15.9, and 16.9 nm, respectively. The FESEM images at various magnifications were probed to study the morphology of synthesized materials. The micrographs of hetero-metallic oxides AgO.CuO.WO3 exposed that three metal oxides merged like small particles and gives a large bulbous appearance. EDX analyses confirmed the formation of required materials with high purity. FTIR data was in agreement with the literature which facilitated to ensure the purity of synthesized samples. The optical bandgap energy was calculated via the Tauc plot indicating that the blend of three metal oxides generated a new energy level in the electronic structure is suitable for photocatalysis in the presence of visible light. The bandgap energy of hetero metallic oxides was 1.25 eV which is less than individual metal oxides signifying the tuning of the bandgap. The incorporation of rGO in AgO.CuO.WO3 hetero-metallic oxides gives a new photocatalyst for optimum photodegradation of methylene blue in minimum time. The percentage degradation via AgO.CuO.WO3 was 87.20% in 70 min while the percentage degradation via AgO.CuO.WO3/rGO recorded by photocatalytic experiment was 95% in 40 min. The photocatalysis data revealed that AgO.CuO.WO3 hetero-metallic oxides-rGO nanocomposite ensured a strong potential to uptake organic dyes from water by promoting redox reactions during photocatalysis in the minimum time limit.  相似文献   

19.
Copper ferrite (CuFe2O4) was synthesised from an equimolar mixture of copper and iron oxides by mechanosynthesis and subsequent heat treatment. After mechanosynthesis, depending on the milling time, the powder consists in a mixture of phases. The heat treatment at 600 °C did not lead to a complete reaction of the mechano-activated precursors. After the heat treatments at 800 and 1000 °C, the complete formation of copper ferrite for almost all the milling times was noticed. The crystal structure of the copper ferrite was found to be cubic for all the samples heat treated at 1000 °C and a mixture of tetragonal and cubic for the samples heat treated at 800 °C. The amount of copper ferrite with cubic structure predominates in the samples with prolonged milling duration and a decrease of the tetragonal distortion by increasing the milling time occurs. The crystallisation of CuFe2O4 in cubic structure for the samples milled for prolonged time is influenced by the powder contamination with iron. The magnetisations of the samples obtained after heat treatment at 1000 °C were found to be larger compared to the ones of the samples heat treated at 800 °C. The iron contamination, milling duration and heat treatment temperature influence the cations distribution, thus leading to the saturation magnetisation of the copper ferrite samples ranging from 11.9 μB/f.u. to 16.4 μB/f.u.  相似文献   

20.
《Ceramics International》2020,46(17):26784-26789
Effect of sintering temperature on the physical and mechanical properties of synthesized B-type carbonated hydroxyapatite (CHA) over a range of temperature in CO2 atmosphere has been investigated. The B-type CHA in nano size was synthesized at room temperature by using a direct pouring wet chemical precipitation method. The synthesized CHA powders were subsequently consolidated by sintering treatment from 800 to 1100 °C. The sintered CHA samples were evaluated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, X-ray fluorescence (XRF), carbon-hydrogen-nitrogen-sulfur-oxygen (CHNS/O) elemental analyzer, Field emission scanning electron microscopy (FESEM), and Vicker's indentation technique. The results obtained from XRD and FESEM indicated that the synthesized B-type CHA powders were nanometer in size. The crystallinity and crystallite size of the sintered CHA samples were increased due to increasing sintering temperature. The heat treatment between 800 °C and 1000 °C has resulted in coarsening and increased hardness of the sintered CHA samples. However, these properties began to deteriorate when sintering beyond 1100 °C due the formation of calcium oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号