首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(9):12291-12298
Nanomaterials offer a wide range of applications in environmental nanotechnology. Hazardous pollutants in the environment are needed to be detected and controlled effectively to avoid human health risks. In this paper, we described the fine-controlled growth of In2O3 nanoparticles embedded on GO nanosheets by a facile precipitation method. The In2O3@GO nanocomposites exhibited outstanding gas sensing performance as compared with pure In2O3 nanoparticles towards NO2. At 225 °C, the sensor displayed high selectivity, best response (78) to 40 ppm NO2, quick response, and recovery times of 106s/42s. The improved sensing performances of the nanocomposite were attributed to large surface area, high gas adsorption-desorption capability, and the formation of p-n heterojunctions between In2O3 nanoparticles and GO nanosheets. The excellent gas detecting activities validate In2O3@GO nanocomposites as a promising candidate in the NO2 gas sensor industry.  相似文献   

2.
Highly active two-dimensional (2D) nanocomposites, integrating the unique merits of individual components and synergistic effects of composites, have been recently receiving attention for gas sensing. In this work, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites were synthesized using In2O3 nanocubes and layered Ti3C2Tx MXene via a facile hydrothermal self-assembly method. Characterization results indicated that the In2O3 nanocubes with sizes approximately 20–130 nm in width were well dispersed on the surface of layered Ti3C2Tx MXene to form numerous heterostructure interfaces. Based on the synergistic effects of electronic properties and gas-adsorption capabilities, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites exhibited high response (29.6%–5 ppm) and prominent selectivity to methanol at room temperature. Meanwhile, the low detection concentration could be reduced to ppm-level, the response/recovery times are shortened to 6.5/3.5 s, excellent linearity and outstanding repeatability. The strategy of compositing layered MXene with metal oxide semiconductor provides a novel pathway for the future development of room temperature gas sensors.  相似文献   

3.
《Ceramics International》2022,48(17):24213-24233
In recent years, gas sensors fabricated from gallium oxide (Ga2O3) materials have aroused intense research interest due to the superior material properties of large dielectric constant, good thermal and chemical stability, excellent electrical properties, and good gas sensing. Over the past decades, Ga2O3-based gas sensors experienced rapid development. The long-term stable Ga2O3-based gas sensors for detecting oxygen and carbon monoxide have been commercialized and renowned with extremely good gas sensing characteristics. Recent pioneering studies also exhibit that the Ga2O3-based gas sensors possess great potentials in applications of detecting nitrogen oxides, hydrogen, volatile organic compounds and ammonia gases. This article presents recent advances in gas sensing mechanism, device performance parameters, influence factors, and applications of Ga2O3-based gas sensors. The impacts of influence factors, doping, material structure and device structure on the performance of gas sensors are discussed in detail. Finally, a brief overview of challenges and opportunities for the Ga2O3-based gas sensors is presented.  相似文献   

4.
采用溶胶-凝胶法结合静电纺丝技术制备了直径20~60 nm的超细氧化铟(In2O3)纳米陶瓷纤维及纳米陶瓷纤维无纺布。采用XRD,IR,SEM,HR-TEM,TGA等分析方法对纳米纤维的形貌和显微结构进行了表征,并研究了其气敏特性。由700℃下煅烧的该超细In2O3纳米纤维所制备的气敏元件具有较好的反应和选择性,对甲醛气体表现出较快的响应和恢复速度。  相似文献   

5.
《Ceramics International》2023,49(18):29962-29970
The few-layered Ti3C2Tx/WO3 nanorods foam composite material was synthesized by electrostatic self-assembly and bidirectional freeze-drying technologies. The phase structure and microstructure of synthesized samples was characterized by XRD, FESEM, TEM and their gas sensing properties estimated via a self-designed equipment with four test channels. The results demonstrate WO3 nanorods were successfully anchored on the surface and between layers of few-layered Ti3C2Tx MXene by electrostatic self-assembly strategy and the composite material simultaneously has a low-density foam morphology by means of bidirectional freeze-drying processes. There exists a typical heterostructure at the interfaces owing to the inseparable contact between the few-layered Ti3C2Tx MXene and WO3 nanorods. Compared with the original WO3 nanorods, the few-layered Ti3C2Tx/WO3 nanorods foam composite material displays excellent gas sensing properties for NO2 detection at low temperature, in particular the optimal value of gas sensing response (Rg/Ra) reaches to 89.46 toward 20 ppm NO2 at 200 °C. The gas sensing mechanism was also discussed. The increase of gas sensitivity is attributed to a fact that during the reaction process of gas sensing, the excellent conductivity of the few-layered Ti3C2Tx MXene provided faster transport channels of free carriers, and the heterojunctions formed by few-layered Ti3C2Tx MXene and WO3 nanorods enhanced the carriers separation efficiency. Meanwhile, the low-density layered structure of few-layered Ti3C2Tx/WO3 nanorods foam composite material provides convenient diffusion paths for gas molecules to the surface of WO3 nanorods.  相似文献   

6.
《Ceramics International》2017,43(10):7942-7947
Arrayed In2O3 nanosheets were synthesized directly via a two-step solution approach on an Al2O3 ceramic tube. Their morphology and structure were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–Vis absorption spectroscopy, and scanning electron microscopy (SEM). The results reveal that the length of each nanosheet is about 1 µm, the width of the bottom of nanosheet is about 200 nm. Importantly, the In2O3 nanosheets with large specific surface area possess highly sensing performance for ethanol detection. The response value to 100 ppm ethanol is about 45 at an operating temperature of 280 °C, and the response and recovery time are extremely short. It is expected that the directly grown In2O3 nanosheets with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting ethanol.  相似文献   

7.
In this study, the effect of Dolapix CE64 as dispersant on the deposition mechanism and chain formation of TiO2 nanoparticles in the different frequencies under non-uniform AC electric field was investigated. The optical microscope (OM) images of the deposition patterns obtained at the frequency of 1 Hz and 100 Hz in non-aqueous media one containing dispersant and the other being dispersant free revealed that the addition of charge inducing agents (dispersant) has drastically changed deposition mechanism enabling particles to enter the gap leaving the electrodes surfaces uncoated. At 10 kHz, it was observed that by the introduction of Dolapix CE64 the TiO2 nanoparticles were able to form chain-like patterns along the electric field lines bridging the interelectrode gap. The obtained pearl chain formation (PCF) was employed to fabricate an NO2 gas sensor which showed a good response to the target gas at 450, 500 and 550 ˚C.  相似文献   

8.
Porous ZnO nanosheets were synthesized by thermal evaporation. The morphology, crystal structure, and sensing properties of the ZnO nanosheets to NO2 gas at room temperature under UV illumination were examined. Au nanoparticles with diameters of a few tens of nanometers were distributed over the ZnO nanosheets. The responses of the multiple networked nanosheet gas sensors were improved 1.8–3.3 fold by Au functionalization at NO2 concentrations ranging from 1 to 5 ppm. Furthermore, the Au-functionalized ZnO nanosheet gas sensors showed a considerably enhanced response at room temperature under ultraviolet (UV) illumination. In addition, the mechanisms through which the gas sensing properties of ZnO nanosheets are enhanced by Au functionalization and UV irradiation are discussed.  相似文献   

9.
《Ceramics International》2015,41(8):9823-9827
In2O3 nanorods decorated with Cr2O3 nanoparticles were synthesized by thermal evaporation of In2S3 powder in an oxidizing atmosphere followed by solvothermal deposition of Cr2O3 and their ethanol gas sensing properties were examined. The pristine and Cr2O3-decorated In2O3 nanorods exhibited responses of ~524% and ~1053%, respectively, to 500-ppm ethanol at 200 °C. The Cr2O3-decorated In2O3 nanorod sensor showed stronger electrical response to ethanol gas at 200 °C than the pristine In2O3 nanorod counterpart. The former also showed faster response and recovery than the latter. The pristine and Cr2O3-decorated In2O3 nanorod sensors showed the strongest response to ethanol gas at 250 and 200 °C, respectively. The Cr2O3-decorated In2O3 nanorod sensor showed selectivity for ethanol gas over other reducing gases. The underlying mechanism for the enhanced response, sensing speed and selectivity of the Cr2O3-decorated In2O3 nanorod sensor for ethanol gas is discussed.  相似文献   

10.
《Ceramics International》2022,48(5):6600-6607
Ti3C2Tx, as a novel two-dimensional material, displays promising prospects in NH3 detection at room temperature. However, the NH3 detection limit of pristine Ti3C2Tx is still a major research concern. Therefore, it is important to explore new Ti3C2Tx-based nanocomposites for better NH3-sensing performance. In the present experiment, Ti3C2Tx/In2O3 nanocomposites were successfully synthesized by ultrasonication and characterized by XRD, FESEM, TEM, XPS, and BET. The optimal Ti3C2Tx/In2O3-based sensor had a high response of 63.8% (30.4 times higher than that of pristine Ti3C2Tx) to 30 ppm NH3 at room temperature. In addition, the optimal Ti3C2Tx/In2O3-based sensor had stable repeatability, excellent selectivity, and long-term stability, while exhibiting excellent potential for NH3 detection at room temperature.  相似文献   

11.
TeO2-nanostructured sensors are seldom reported compared to other metal oxide semiconductor materials such as ZnO, In2O3, TiO2, Ga2O3, etc. TeO2/CuO core-shell nanorods were fabricated by thermal evaporation of Te powder followed by sputter deposition of CuO. Scanning electron microscopy and X-ray diffraction showed that each nanorod consisted of a single crystal TeO2 core and a polycrystalline CuO shell with a thickness of approximately 7 nm. The TeO2/CuO core-shell one-dimensional (1D) nanostructures exhibited a bamboo leaf-like morphology. The core-shell nanorods were 100 to 300 nm in diameter and up to 30 μm in length. The multiple networked TeO2/CuO core-shell nanorod sensor showed responses of 142% to 425% to 0.5- to 10-ppm NO2 at 150°C. These responses were stronger than or comparable to those of many other metal oxide nanostructures, suggesting that TeO2 is also a promising sensor material. The responses of the core-shell nanorods were 1.2 to 2.1 times higher than those of pristine TeO2 nanorods over the same NO2 concentration range. The underlying mechanism for the enhanced NO2 sensing properties of the core-shell nanorod sensor can be explained by the potential barrier-controlled carrier transport mechanism.

PACS

61.46. + w; 07.07.Df; 73.22.-f  相似文献   

12.
《Ceramics International》2021,47(20):28811-28820
Highly sensitive NO2 gas sensors with low detection limit are vital for practical application in air pollution monitoring. Here, the NO2 gas sensing performance of porous ZnO nanosheets and nanoplates were investigated, with different shape and thickness. It was found that ultra-thin ZnO nanoplates had a higher sensitivity than coral-like ZnO nanosheets. The results were attributed to the high specific surface and very small thickness of the ultrathin nanoplates. The nanoplates have indeed a thickness of 15 nm compared to that of the nanosheets which is 100 nm, and a BET surface area of 75 m2/g, while that of the nanosheets is 6 m2/g. The chemosensor based on ultra-thin ZnO nanoplates shows a response (calculated as the ratio between the resistance of the sensor in the presence of the gas and in its absence) of 76 to 0.5 ppm of NO2 at 200 °C, with a theoretical detection limit of 3 parts per trillion and a selectivity higher than 760 towards acetone, ethanol, isopropyl alcohol, triethylamine, SO2 and CO. The specific surface and the small thickness of the ultra-thin nanoplates contribute to its highly improved sensing performance, making it ideal for NO2 gas sensing.  相似文献   

13.
《Ceramics International》2016,42(11):12807-12814
Vertically aligned ZnO nanorods (ZNRs) arrays with various aspect ratios were deposited by using a simple and inexpensive hydrothermal route at relatively low temperature of 90 °C. The influence of hydroxide anion generating agents in the solution on the growth of ZNRs arrays was studied. Hexamethylenetetramine (HMTA) and ammonia were used as hydroxide anion generating agents while polyethyleneimine (PEI) as structure directing agent. The combined effect of these three agents plays a crucial role in the growth of ZNRs arrays with respect to their rod length and diameter, which controls the aspect ratio. The deposited ZNRs exhibited hexagonal wurtize crystal structure with preferred orientation along (002) plane. The highly crystalline nature and pure phase formation of ZNRs was confirmed from FT-Raman studies. The maximum gas response (Rg/Ra) of 67.5 was observed for high aspect ratio ZNRs, deposited with combination of HMTA, ammonia as well as PEI. The enhancement in gas response can be attributed to high surface area (45 cm2/g) and desirable surface accessibility in high aspect ratio ZNRs. Fast response–recovery characteristics, especially a much quicker gas response time of 32 s and recovery time of 530 s were observed at 100 ppm NO2 gas concentration.  相似文献   

14.
《Ceramics International》2020,46(13):21292-21303
Nanosized M-HNTs-MnO2 (Magnetic halloysite nanotubes-manganese dioxide) nanocomposite was synthesized by the reduction-precipitation method followed by the hydrothermal process. The existence of MnO2 nanoflakes on M-HNTs represents 3-D nanostructures without stacking of nanotubes and agglomeration. The sensor-based on M-HNTs-MnO2 nanocomposites exhibits higher sensor response (Rair/Rgas = 35.6) to 100 ppm of acetone gas at operating temperature (150 °C), with a short response-recovery time (3 s/7 s). The M-HNTs-MnO2 nanocomposite sensor shows excellent potential to act as a low cost, low-temperature sensor for acetone gas, with high acetone selectivity under high humidity conditions and with the interference of other gases. The high surface to volume ratio, three-dimensional nanostructure, and strong interactions between M-HNTs and MnO2 nanoflakes are accountable for the improvement of acetone sensing performance. Based on the high acetone selectivity, high stability and fast dynamic response, the M-HNTs and MnO2 sensor is an extremely appropriate candidate for a low-cost acetone sensor, and the projected approach offers a way to develop gas sensors that can be function at low temperatures for a wide variety of applications.  相似文献   

15.
Metal oxide semiconductors with branched structures, such as branched nanowires (b-NWs), have promising properties for being used in gas sensors. In this work, we synthesized Pt-decorated Bi2O3-branched SnO2 nanowires (NWs). NO2 sensing studies revealed the superior capacity of a Pt-decorated Bi2O3-branched SnO2 NWs gas sensor relative to pristine and branched SnO2 gas sensors, and it worked at near room temperature (50 °C). The increased sensing capacity was related to the synergistic effects of Pt decoration and Bi2O3 branching, particularly the morphology of the gas sensor with branched structures, the promising effects of Pt as a noble metal with good catalytic activity, and the generation of homo- and heterojunctions in the Pt-decorated Bi2O3-branched SnO2 NWs gas sensor. The results obtained in this work are useful for design and development of NO2 gas sensors using a simple strategy, which can be easily extended to various metal oxides.  相似文献   

16.
Two-dimensional layered Ti3C2Tx MXene was prepared through hydrothermal etching method with LiF and hydrochloric (HCl) acid. Ti3C2Tx was further treated with oxygen plasma activated by microwave energy to obtain the activated Ti3C2Tx at different temperatures ranging from 350 °C to 550 °C. The gas-sensing properties of raw Ti3C2Tx and Ti3C2Tx activated with oxygen microwave plasma were tested toward different volatile organic compounds gases. The results indicated that Ti3C2Tx activated at 500 °C exhibited excellent gas-sensing properties at room temperature (25 °C) to 100 ppm ethanol with a value of 22.47, which is attributed to the enhancement of the amount of oxygen functional groups and defects on the MXene Ti3C2Tx film, and in turn to lead to more oxygen molecules adsorption and desorption reaction in the active defect sites. The enhancement of ethanol-sensing performance demonstrated that the activated Ti3C2Tx possess great potential in gas sensing.  相似文献   

17.
A series of high-response and fast-response/recovery n-butanol gas sensors was fabricated by adding ZnO to In2O3 in varying molar ratios to form ZnO-In2O3 nanocomposites via a facile co-precipitation hydrothermal method. Morphological characterizations revealed that the shape of pure In2O3 was changed from irregular cubes into irregular nanoparticles, 30–50?nm in size, with the addition of ZnO. Compared with the pure In2O3 gas sensor, the ZnO-In2O3 gas sensor exhibits superior n-butanol sensing performance. With the introduction of ZnO, the response of the sensor to n-butanol was improved from 17 to 99.5 at 180?°C for a [Zn]:[In] molar ratio of 1:1. In addition, the ZnO-In2O3 gas sensors show a reduced optimal working temperature, excellent selectivity to n-butanol, and good repeatability. The response of the ZnO-enhanced In2O3-based sensors showed a strong linear relationship with the n-butanol gas concentration, allowing for the quantitative detection of n-butanol gas.  相似文献   

18.
《Ceramics International》2017,43(11):8372-8377
Real-time monitoring of trace NO2 emission has been an emerging challenge in environment and health sectors lately. Aiming to overcome this challenge, NO2 gas sensors based on cuprous oxide quantum dots (Cu2O QDs) anchored onto reduced graphene oxide (RGO) nanosheets serving as a sensitive layer were prepared in this report. Apart from a series of purposive measurements, various characterization techniques such as XRD, Raman, XPS and TEM were employed as well to assist the exploration of sensors performance to NO2 gas. The experimental results revealed a 580% response enhancement for prepared RGO/Cu2O sensors compared with pure RGO counterparts, as well as an excellent selectivity. In a specific experiment, the sensing response attained 4.8% and 29.3% toward 20 ppb and 100 ppb NO2 respectively at 60 °C, which was larger than most Cu2O based resistive gas sensors. Moreover, further subtle modulation of this RGO/Cu2O nanocomposites led to a preferable room-temperature response of 37.8% toward 100 ppb NO2, which also offered a favorable stability of 98.1% response retention after four exposures within ten days. The obtained results imply that the prepared RGO/Cu2O QDs sensors possess a competitive capability of trace NO2 detection.  相似文献   

19.
We report the synthesis of nanostructured SnO2 by a simple inexpensive sol–gel spin coating method using m-cresol as a solvent. This method facilitates rapid synthesis at comparatively lower temperature enabling formation of nanostructures suitable for gas-sensing applications. Various physicochemical techniques have been used for the characterization of SnO2 thin films. X-ray diffraction analysis confirmed the single-phase formation of tetragonal SnO2 having crystallite size 5–10 nm. SnO2 showed highest response (19%) with 77.90% stability toward 100 ppm nitrogen dioxide (NO2) at 200 °C. The response time of 7 s and recovery time of 20 min were also observed with the same operating parameters. The probable mechanism is proposed to explain the selective response toward nitrogen dioxide. Impedance spectroscopy studies showed that the response to nitrogen dioxide is mainly contributed by grain boundaries. The reproducibility and stability study of SnO2 sensor confirmed its candidature for detection of NO2 gas at low concentration (10–100 ppm) and lower operating temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号