共查询到2条相似文献,搜索用时 0 毫秒
1.
《Geotextiles and Geomembranes》2020,48(5):625-633
This research evaluates the shear strength properties of unreinforced and geogrid-reinforced ladle furnace slag (LFS), electric arc furnace slag (EAFS) and a blend comprising 50% LFS and 50% EAFS (LFS50+EAFS50) using the large direct shear testing apparatus (DST). The large DST results of unreinforced steel slags indicated that LFS had the lowest shear stress ratio at the peak shear strength among all samples, while LFS50+EAFS50 samples (both unreinforced and reinforced) demonstrated the highest shear stress ratio amongst the tested samples. A higher apparent cohesion value was achieved with the inclusion of biaxial geogrid in LFS and EAFS samples as compared to the triaxial geogrid interface. The observed behavior can be attributed to the larger aperture size of the biaxial geogrid compared to the triaxial geogrid leaving more void planar space for a direct interaction between slag particles. In contrast, the apparent cohesion of LFS50+EAFS50 without a geogrid interface was high and did not change significantly with the insertion of geogrid. Given, the range of internal friction angles for ordinary soils, studied slag by-products achieved internal friction angles in excess of 59° (with no geogrid interface) and these significant values proved highly beneficial application for these waste materials in pavement construction. 相似文献
2.
This paper presents the results of experimental investigations and constitutive modeling of cyclic interface shearing between HDPE geomembrane and cohesionless sandy gravel. A series of cyclic interface shear tests was performed using a large-scale cyclic shear apparatus with servo controlled system. Particular attention was paid to the influences of the amount of shear-displacement amplitude, number of cycles, shear rate and the normal pressure on the mechanical response. The experimental results show that the path of the shear stress against the cyclic shear displacement is strongly non-linear and forms a closed hysteresis loop, which is pressure dependent, but almost independent of the shear rate. For small shear-displacement amplitudes, the obtained damping ratio is significantly greater than zero, which is different to the behavior usually observed for cyclic soil to soil shearing. In order to describe the pressure dependency of the hysteresis loop using a single set of constitutive parameters, new approximation functions are put forward and embedded into the concept of the Masing rule. Further, a new empirical function is proposed for the damping ratios to capture the experimental data for both small and large cyclic shear-displacement amplitudes. The included model parameters are easy to calibrate and the new functions may also be useful in developing enhanced constitutive models for the simulation of the cyclic interface shear behavior between other geosynthetics and soils. 相似文献