首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: It has been proposed that Streptomyces malonyl CoA: holo acyl carrier protein transacylases (MCATs) provide a link between fatty acid and polyketide biosynthesis. Two recent studies have provided evidence that the presence of MCAT is essential for polyketide synthesis to proceed in reconstituted minimal polyketide synthases (PKSs). In contrast to this, we previously showed that the holo acyl carrier proteins (ACPs) from type II PKSs are capable of catalytic self-malonylation in the presence of malonyl CoA, which suggests that MCAT might not be necessary for polyketide biosynthesis. RESULTS: We reconstituted a homologous actinorhodin (act) type II minimal PKS in vitro. When act holo-ACP is present in limiting concentrations, MCAT is required by the synthase complex in order for polyketide biosynthesis to proceed. When holo-ACP is present in excess, however, efficient polyketide synthesis proceeds without MCAT. The rate of polyketide production increases with holo-ACP concentration, but at low ACP concentration or equimolar AC:KS:CLF (KS, ketosynthase; CLF, chain length determining factor) concentrations this rate is significantly lower than expected, indicating that free holo-ACP is sequestered by the KS/CLF complex. CONCLUSIONS: The rate of polyketide biosynthesis is dictated by the ratio of holo-ACP to KS and CLF, as well as by the total protein concentration. There is no absolute requirement for MCAT in polyketide biosynthesis in vitro, although the role of MCAT during polyketide synthesis in vivo remains an open question. MCAT might be responsible for the rate enhancement of malonyl transfer at very low free holo-ACP concentrations or it could be required to catalyse the transfer of malonyl groups from malonyl CoA to sequestered holo-ACP.  相似文献   

2.
The deduced amino acid sequence of the gsp gene, located upstream of the 5' end of the gramicidin S operon (grs operon) in Bacillus brevis, showed a high degree of similarity to the sfp gene product, which is located downstream of the srfA operon in B. subtilis. The gsp gene complemented in trans a defect in the sfp gene (sfpO) and promoted production of the lipopeptide antibiotic surfactin. The functional homology of Gsp and Sfp and the sequence similarity of these two proteins to EntD suggest that the three proteins represent a new class of proteins involved in peptide secretion, in support of a hypothesis published previously (T. H. Grossman, M. Tuckman, S. Ellestad, and M. S. Osburne, J. Bacteriol. 175:6203-6211, 1993).  相似文献   

3.
4.
The DNA sequence of five contiguous open reading frames encoding enzymes for phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84 was determined. These open reading frames were named phzF, phzA, phzB, phzC and phzD. Protein PhzF is similar to 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases of solanaceous plants. PhzA is similar to 2,3-dihydro-2,3-dihydroxybenzoate synthase (EntB) of Escherichia coli. PhzB shares similarity with both subunits of anthranilate synthase and the phzB open reading frame complemented an E. coli trpE mutant deficient in anthranilate synthase activity. Although phzC shares little similarity to known genes, its product is responsible for the conversion of phenazine-I-carboxylic acid to 2-hydroxy-phenazine-I-carboxylic acid. PhzD is similar to pyridoxamine phosphate oxidases. These results indicate that phenazine biosynthesis in P. aureofaciens shares similarities with the shikimic acid, enterochelin, and tryptophan biosynthetic pathways.  相似文献   

5.
6.
A double-tagging, dual affinity chromatographic procedure, which permits isolation of dimers independently mutated in each subunit, has been exploited to probe the functional topology of the animal fatty acid synthase. Dimers were engineered in which the chain-terminating thioesterase reaction was compromised by mutation of the (active-site) serine residue in both subunits; these dimers assembled two long-chain fatty acyl moieties, which remained covalently linked to the 4'-phosphopantetheine residues of the two acyl carrier protein domains. Significantly, dimers that contained an additional mutation that compromised the activity of either the beta-ketoacyl synthase or malonyl/acetyltransferase activity in only one subunit also assembled two long-chain acyl moieties. In contrast, in a control experiment, introduction of an additional mutation that compromised the function of the acyl carrier protein domain in only one subunit resulted in the assembly of only one long-chain acyl moiety per dimer. Because the beta-ketoacyl synthase and malonyl/acetyltransferase domains are located near the amino terminus of the polypeptide and the acyl carrier protein domain near the carboxyl terminus, these results support a modified model for the animal fatty acid synthase in which head-to-tail functional contacts are possible both within as well as between subunits.  相似文献   

7.
The polyhydroxyalkanoate (PHA) synthase gene (phaCNc) from Nocardia corallina was identified in a lambda library on a 6-kb BamHI fragment. A 2.8-kb XhoII subfragment was found to contain the intact PHA synthase. This 2.8-kb fragment was subjected to DNA sequencing and was found to contain the coding region for the PHA synthase and a small downstream open reading frame of unknown function. On the basis of DNA sequence, phaCNc is closest in homology to the PHA synthases (phaCPaI and phaCPaII) of Pseudomonas aeruginosa (approximately 41% identity and 55% similarity). The 2.8-kb XhoII fragment containing phaCNc was subcloned into broad host range mobilizable plasmids and transferred into Escherichia coli, Klebsiella aerogenes (both containing a plasmid bearing phaA and phaB from Ralstonia eutropha), and PHA-negative strains of R. eutropha and Pseudomonas putida. The recombinant strains were grown on various carbon sources and the resulting polymers were analyzed. In these strains, the PHA synthase from N. corallina was able to mediate the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) containing high levels of 3-hydroxyhexanoate when grown on hexanoate and larger even-chain fatty acids and poly(3-hydroxyvalerate-co-3-hydroxyheptanoate) containing high levels of 3-hydroxyheptanoate when grown on heptanoate or larger odd-chain fatty acids.  相似文献   

8.
9.
In the crystal structure of troponin C, the holo C-domain is bound in a head-to-tail fashion to the A-helix of the apo N-domain of a symmetry-related molecule. Using this interaction, we have proposed a model for the calmodulin-peptide complex. We find that the interaction of the C-domain with the A-helix is similar to that observed in the NMR structure of the calmodulin-myosin light chain kinase (MLCK) peptide complex. This similarity in binding has enabled us to make a precise sequence alignment of the target peptides in the calmodulin-binding cleft and to rationalize the amino acid sequence-dependent binding strengths of various peptides. Our model differs from that proposed by Strynadka and James (Proteins Struct. Funct. Genet. 7, 234-248, 1990) in that the peptides are rotated by 100 degrees in the calmodulin binding cleft.  相似文献   

10.
Hemolysin toxin produced and secreted by pathogenic Escherichia coli is one of a family of cytolytic, structurally homologous protein toxins known as RTX (repeats in toxin) toxins. RTX toxins are products of a gene cluster, CABD. The A gene product, nontoxic hemolysin (proHlyA), is made toxic by posttranslational fatty acylation of two internal lysine residues. HlyC, the C gene product, is essential for acylation, and acyl-acyl carrier protein (ACP) is the acyl donor. HlyB and HlyD are involved in secretion of the toxin. ProHlyA and HlyC were separately subcloned, expressed, and purified, and acyl-ACPs with diverse radioactive acyl groups were synthesized. With these proteins, the conversion of proHlyA to HlyA by acyl transfer was assayed. Acyl-ACP was the obligate acyl donor. Acyl transfer was catalyzed by HlyC monomer, and an acyl-enzyme intermediate was shown. Reaction was inhibited by ACPSH but not by fatty acid or fatty-acyl CoA. Km and Vmax for HlyA were 0.94 microM and 7.5 pmol of acyl group transferred/min, respectively; Km and Vmax for myristoyl-ACP were 0.48 microM and 6.9 pmol/min. The kinetic parameters of different acyl-ACPs resembled a competitive inhibition as acyl group carbon chain length increased; Km's increased while Vmax's remained unchanged. The different kinetic efficacies in the acyltransferase reaction of the ACPs with different acyl groups contrasted notably with the lytic powers of the corresponding acyl-toxins that they generated.  相似文献   

11.
Acyl carrier protein (ACP) is the carrier of fatty acids during their synthesis and utilization. ACPs (or ACP-like protein domains) have been found throughout biology and share significant amino acid sequence similarities. All ACPs undergo a post-translational modification in which 4'-phosphopantetheine is transferred from CoA to a specific serine of apo-ACP. This modification is essential for activity because fatty acids are bound in thioester linkage to the sulfhydryl of the prosthetic group. Overproduction of Escherichia coli ACP from multicopy plasmids strongly inhibits growth of E. coli. We report that upon overexpression of ACP in E. coli post-translational modification is inefficient and the apo protein accumulates and blocks cell growth by inhibition of lipid metabolism. Moreover, a mutant form of ACP that is unable to undergo post-translational modification is a potent inhibitor of growth. Finally, we observed that an increase in the efficiency of modification of overexpressed ACP results in decreased toxicity. The accumulated apo-ACP acts as a potent in vitro inhibitor of the sn-glycerol-3-phosphate acyltransferase resulting in an inability to transfer the completed fatty acid to sn-glycerol 3-phosphate. The degree of inhibition depended upon the species of donor acyl chain. Utilization of cis-vaccenoyl-ACP by the sn-glycerol-3-phosphate acyltransferase was inhibited to a much greater extent by apo-ACP than was utilization of palmitoyl-ACP. 1-Acyl glycerol-3-phosphate acyltransferase was also inhibited in vitro by apo-ACP, although not at physiologically relevant concentrations. These in vitro data are supported by in vivo labeling data, which showed a large decrease in cis-vaccenate incorporation into phospholipid during overproduction of ACP, but no decrease in the rate of synthesis of long chain acyl-ACPs. These data indicate that acylation of sn-glycerol 3-phosphate is the major site of inhibition by apo-ACP.  相似文献   

12.
Escherichia coli cardiolipin synthase catalyzes reversible phosphatidyl group transfer from one phosphatidylglycerol molecule to another to form cardiolipin (CL) and glycerol. The enzyme is specified by the cls gene, located at min 28.02 of the E. coli genetic map. Cells with mutations in cls have longer doubling times, tend to lose viability in the stationary phase, are more resistant to 3,4-dihydroxybutyl-1-phosphonate, and have an altered sensitivity to novobiocin. Although cls null mutants appear to lack CL synthase activity, they are still able to form trace quantities of CL. The enzyme appears to be regulated at both the genetic and enzymatic levels. CL synthase's molecular mass is 45-46 kDa, or about 8 kDa less than the polypeptide predicted by the gene sequence, suggesting that posttranslational processing occurs. CL synthase can use various polyols such as mannitol and arabitol to convert CL to the corresponding phosphatidylglycerol analog. When the amino acid sequences of four bacterial CL synthases are compared, three highly conserved regions are apparent. One of these regions contains a conserved pentapeptide sequence, RN(Q)HRK, and another has a conserved HXK sequence. These two sequences may be part of the active site. E. coli CL synthase has been studied by using a mixed micelle assay. The enzyme is inhibited by CL, the product of the reaction, and by phosphatidate. Phosphatidylethanolamine partially offsets inhibition caused by CL but not by phosphatidate. CDP-diacylglycerol does not appear to affect the activity of the purified enzyme but does stimulate the activity associated with crude membrane preparations.  相似文献   

13.
(E)-alpha-Bisabolene synthase is one of two wound-inducible sesquiterpene synthases of grand fir (Abies grandis), and the olefin product of this cyclization reaction is considered to be the precursor in Abies species of todomatuic acid, juvabione, and related insect juvenile hormone mimics. A cDNA encoding (E)-alpha-bisabolene synthase was isolated from a wound-induced grand fir stem library by a PCR-based strategy and was functionally expressed in Escherichia coli and shown to produce (E)-alpha-bisabolene as the sole product from farnesyl diphosphate. The expressed synthase has a deduced size of 93.8 kDa and a pI of 5. 03, exhibits other properties typical of sesquiterpene synthases, and resembles in sequence other terpenoid synthases with the exception of a large amino-terminal insertion corresponding to Pro81-Val296. Biosynthetically prepared (E)-alpha-[3H]bisabolene was converted to todomatuic acid in induced grand fir cells, and the time course of appearance of bisabolene synthase mRNA was shown by Northern hybridization to lag behind that of mRNAs responsible for production of induced oleoresin monoterpenes. These results suggest that induced (E)-alpha-bisabolene biosynthesis constitutes part of a defense response targeted to insect herbivores, and possibly fungal pathogens, that is distinct from induced oleoresin monoterpene production.  相似文献   

14.
Grand fir (Abies grandis) has been developed as a model system for the study of oleoresin production in response to stem wounding and insect attack. The turpentine fraction of the oleoresin was shown to contain at least 38 sesquiterpenes that represent 12.5% of the turpentine, with the monoterpenes comprising the remainder. Assays of cell-free extracts from grand fir stem with farnesyl diphosphate as substrate indicated that the constitutive sesquiterpene synthases produced the same sesquiterpenes found in the oleoresin and that, in response to wounding, only two new products were synthesized, delta-cadinene and (E)-alpha-bisabolene. A similarity based cloning strategy yielded two new cDNA species from a stem cDNA library that, when expressed in Escherichia coli and the gene products subsequently assayed, yielded a remarkable number of sesquiterpene products. The encoded enzymes have been named delta-selinene synthase and gamma-humulene synthase based on the principal products formed; however, each enzyme synthesizes three major products and produces 34 and 52 total sesquiterpenes, respectively, thereby accounting for many of the sesquiterpenes of the oleoresin. The deduced amino acid sequence of the delta-selinene synthase cDNA open reading frame encodes a protein of 581 residues (at 67.6 kDa), whereas that of the gamma-humulene synthase cDNA encodes a protein of 593 residues (at 67.9 kDa). The two amino acid sequences are 83% similar and 65% identical to each other and range in similarity from 65 to 67% and in identity from 43 to 46% when compared with the known sequences of monoterpene and diterpene synthases from grand fir. Although the two sesquiterpene synthases from this gymnosperm do not very closely resemble terpene synthases from angiosperm species (52-56% similarity and 26-30% identity, there are clustered regions of significant apparent homology between the enzymes of these two plant classes. The multi-step, multi-product reactions catalyzed by the sesquiterpene synthases from grand fir are among the most complex of any terpenoid cyclase thus far described.  相似文献   

15.
We determined 5.8 kilobases of nucleotide sequence upstream of the rubredoxin encoding rubA gene of Acinetobacter calcoaceticus (Ac) ADP1. Sequence analysis revealed four open reading frames named cysD', cobQ, sodA and lysS, coding for proteins with high similarity to known sulfate adenylate transferases (partial), cobyric acid synthases, superoxide dismutases (Sod) and lysyl tRNA synthetases, respectively. Out of a large number of bacterial Sod sequences SodA of Ac ADP1 is the first member of the Fe/Mn Sod family apparently located in the periplasmic space.  相似文献   

16.
17.
Type A Pasteurella multocida, a prevalent animal pathogen, employs a hyaluronan [HA] polysaccharide capsule to avoid host defenses. We utilized transposon insertional mutagenesis to identify the P. multocida HA synthase, the enzyme that polymerizes HA. A DNA fragment from a wild-type genomic library could direct HA production in vivo in Escherichia coli, a bacterium that normally does not produce HA. Analysis of truncated plasmids derived from the original clone indicated that an open reading frame encoding a 972-residue protein was responsible for HA polymerization. This identification was confirmed by expression cloning in E. coli; we observed HA capsule formation in vivo and detected activity in membrane preparations in vitro. The polypeptide size was verified by photoaffinity labeling of the native P. multocida HA synthase with azido-UDP sugar analogs. Overall, the P. multocida sequence is not very similar to the other known HA synthases from streptococci, PBCV-1 virus, or vertebrates. Instead, a portion of the central region of the new enzyme is more homologous to the amino termini of other bacterial glycosyltransferases that produce different capsular polysaccharides or lipopolysaccharides. In summary, we have discovered a unique HA synthase that differs in sequence and predicted topology from the other known enzymes.  相似文献   

18.
A cDNA encoding farnesyl diphosphate (FPP) synthase (FPPS) has been cloned from a cDNA library of Artemisia annua. The sequence analysis showed that the cDNA encoded a protein of 343 amino acid (aa) residues with a calculated molecular weight of 39420 kDa. The deduced aa sequence of the cDNA was highly similar to FPPS from other plants, yeast and mammals, and contained the two conserved domains found in polyprenyl synthases including FPPS, geranylgeranyl diphosphate synthases and hexaprenyl diphosphate synthases. The expression of the cDNA in Escherichia coli showed enzyme activity for FPPS in vitro.  相似文献   

19.
In Saccharomyces cerevisiae, the low molecular weight acyl carrier protein (ACP) of mitochondrial type II fatty acid synthase (FAS) and the cytoplasmic type I FAS multienzyme contain 4'-phosphopantetheine as a prosthetic group. Sequence alignment studies with the recently isolated phosphopantetheine:protein transferase (PPTase), Ppt1p, from Brevibacterium ammoniagenes revealed the yeast open reading frame, YPL148C, as a potential PPTase gene (25% identical and 43% conserved amino acids). In accordance with this similarity, pantetheinylation of mitochondrial ACP was lost upon disruption of YPL148C. In contrast, biosynthesis of cytoplasmic holo-FAS remained unaffected by this mutation. According to these characteristics, the newly identified gene was designated as PPT2. Similar to ACP null mutants, cellular lipoic acid synthesis and, hence, respiration were abolished in PPT2 deletants. ACP pantetheinylation, lipoic acid synthesis, and respiratory competence were restored upon transformation of PPT2 mutants with cloned PPT2 DNA. In vitro, holo-ACP synthesis was achieved by incubating apo-ACP with coenzyme A in the presence of purified Ppt2p. The homologous yeast enzyme could be replaced, in this assay, by the ACP synthase (EC 2.7.8.7) of Escherichia coli but not by the type I FAS-specific PPTase of B. ammoniagenes, Ppt1p. These results conform with the inability of Ppt2p to activate the cytoplasmic type I FAS complex of yeast.  相似文献   

20.
Escherichia coli possesses a hexameric citrate synthase that exhibits allosteric kinetics and regulatory sensitivity, and for which the gene (gltA) has previously been cloned and sequenced. A citrate-synthase-deficient strain of E. coli (K114) has been mutated to generate a revertant (K114r4) that produces a dimeric citrate synthase with altered kinetic and regulatory properties. On cloning and sequencing the gltA gene from both K114 and K114r4, a single mutation was found that caused the replacement of Asp362 with Asn. Asp362 has been previously shown to be a catalytically essential residue in E. coli citrate synthase, and we demonstrate that the hexameric enzyme produced on expression of the gltA gene from K114 and K114r4 is inactive. The dimeric citrate synthase from K114r4 has been purified and shown to be immunologically distinct from the wild-type hexameric enzyme. Determination of its N-terminal amino acid sequence demonstrates that the mutant citrate synthase is encoded by a gene distinct from the E. coli gltA gene. The N-terminal sequence is compared with those of other eukaryotic, eubacterial and archaebacterial citrate synthases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号