首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
We show a practical sequential injection/zone fluidics-based analyzer that measures waterborne arsenic. The approach is capable of differentiating between inorganic As(III) and As(V). The principle is based on generating AsH3 from the sample in a confined chamber by borohydride reduction at controlled pH, sparging the chamber to drive the AsH3 to a small reflective cell located atop a photomultiplier tube, allowing it to react with ozone generated from ambient air, and measuring the intense chemiluminescence that results. Arsine generation and removal from solution results in isolation from the sample matrix, avoiding the pitfalls encountered in some solution-based analysis techniques. The differential determination of As(III) and As(V) is based on the different pH dependence of the reducibility of these species to AsH3. At pH < or =1, both As(III) and As(V) are quantitatively converted to arsine in the presence of NaBH4. At a pH of 4-5, only As(III) is converted to arsine. In the present form, the limit of detection (S/N = 3) is 0.05 microg/L As at pH < or =1 and 0.09 microg/L As(III) at pH approximately 4-5 for a 3-mL sample. The analyzer is intrinsically automated and requires 4 min per determination. It is also possible to determine As(III) first at pH 4.5 and then determine the remaining As in a sequential manner; this requires 6 min. There are no significant practical interferences. A new borohydride solution formulation permits month-long reagent stability.  相似文献   

2.
The electrochemical reduction of inorganic As on a graphite cathode depends on the current density. We observed that while only inorganic As(III) is reduced to AsH(3) at low current densities, at high current densities both forms of inorganic As are reduced. We describe a unique electrochemical reactor in which the cylindrical anode compartment is isolated from the outer concentric cathode compartment by a Nafion tube in which a hole is deliberately made and the entire anode compartment is inside the cylindrical cavity of a small volume (~115 μL) cathode chamber. The evolved arsine is then quantitated by gas-phase chemiluminescence (GPCL) reaction with ozone; the latter is generated from oxygen formed during electrolysis. For the dimensions used, inorganic As(III) can be selectively determined at a current of 0.1 A while total inorganic As (both As(III) and As(V)) respond equally at an applied electrolysis current at 0.85 A, without any sample treatment. For a 1-mL sample, the system provides a limit of detection (LOD, S/N = 3) of 0.09 μg/L for total As (i = 0.85 A) and an LOD of 0.76 μg/L for As(III) (i = 0.10 A); As(V) is obtained by difference. Comparison of ICP-MS results for total As in groundwater samples that span a large range of concentration and total inorganic As determined by the present method showed a high correlation (r(2) = 0.9975) and a near unity slope. The basic electrochemical arsine generation technique and current-differentiated oxidation state speciation should be applicable as the front end to many other arsenic measurements techniques, including atomic spectrometry.  相似文献   

3.
A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH(3) generation using 3.5 mol L(-1) HCl as carrier solution and 0.35% (m/v) NaBH(4) in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl(-), SO(4)(2-), NO(3)(-), HPO(4)(2-), HCO(3)(-) on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C(6)H(8)O(6) solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 μg L(-1) and 0.6 μg L(-1) for As(III) and inorganic total As, respectively, were obtained for a 500 μL sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samplesh(-1). The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species separation was performed through the employ of a serial connection of membrane filters and anion-exchange cartridges. Advantages derived from this approach were evaluated. HPLC-ICPMS was employed to study the consistency of the analytical results.  相似文献   

4.
Chen D  Huang C  He M  Hu B 《Journal of hazardous materials》2009,164(2-3):1146-1151
A simple and sensitive method using micro-column packed with 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS) modified ordered mesoporous silica combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for the speciation of inorganic arsenic (As(III) and As(V)) has been developed. The adsorption behaviors of As(III) and As(V) on AAPTS modified ordered mesoporous silica were investigated. It was found that As(V) can be selectively adsorbed on the micro-column within pH of 3-9, while As(III) could not be retained in the studied pH range and passed through the micro-column directly. Total inorganic arsenic was extracted after the oxidation of As(III) to As(V) with 50.0 micromol L(-1) KMnO(4). The assay of As(III) was based on subtracting As(V) from total As. The effect of various parameters on the separation/preconcentration of As(III) and As(V) have been investigated and the optimal experimental conditions were established. The adsorption capacity of AAPTS modified ordered mesoporous silica for As(V) was found to be 10.3 mg g(-1). The detection limit of the method for As(V) was 0.05 microg L(-1) with an enrichment factor of 100, and the relative standard deviation (R.S.D.) was 5.7% (n=7, C=1.0 microg L(-1)). In order to validate the developed method, a certified reference material GSBZ50004-88 environmental water sample was analyzed and the determined values were in good agreement with the certified values. The proposed method was successfully applied to the speciation analysis of inorganic arsenic in natural water samples.  相似文献   

5.
We present a newly developed gas-phase chemiluminescence (CL) detection method for the separation and quantification of inorganic and organic arsenic species. Arsenite, arsenate, dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were separated by anion exchange using carbonate-bicarbonate and NaOH eluents with step-gradient elution. The separated species were passed through a UV photooxidation reactor which decomposed the organic species and converted them to inorganic As(V). Subsequent on-line hydride generation with acid and sodium borohydride produces AsH3 and H2, which are separated from the liquid in a gas-liquid separator. The produced AsH3, driven by H2, reacts with ozone in a small reflective cell located atop a photomultiplier tube, resulting in intense CL. In the present form, the limits of detection (LODs, signal-to-noise = 3), based on peak height, for arsenite, arsenate, MMA, and DMA are 0.4, 0.2, 0.5, and 0.3 microg/L, respectively, for a 100 microL injected sample. This analyzer demonstrates the robustness of the CL detection system for arsenic and provides an affordable alternative to atomic spectrometry for use as a detector after chromatographic speciation. We found no significant practical interferences.  相似文献   

6.
Arsenite (As(III)) and arsenate (As(V)) removal by direct contact membrane distillation (DCMD) were investigated with self-made polyvinylidene fluoride (PVDF) membranes in the present work. Permeability and ion rejection efficiency of the membrane were tested before the arsenic removal experiments. A maximum permeate flux 20.90 kg/m(2)h was obtained, and due to the hydrophobic property, the PVDF membrane had high rejection of inorganic anions and cations which was independent of the solution pH and the temperature. The experimental results indicated that DCMD process had higher removal efficiency of arsenic than pressure-driven membrane processes, especially for high-concentration arsenic and arsenite removal. The experimental results indicated that the permeate As(III) and As(V) were under the maximum contaminant limit (10 microg/L) until the feed As(III) and As(V) achieved 40 and 2000 mg/L, respectively. The 250 h simultaneous DCMD performance of 0.5mg/L As(III) and As(V) solution was carried out, respectively. The permeate arsenic was not detected during the process which showed the PVDF membrane had stable arsenic removal efficiency. Membrane morphology changed slightly after the experiments, however, the permeability and the ion rejection of the membrane did not change.  相似文献   

7.
Arsenic can be determined in parts-per-million (ppm) level by absorbance measurement. This method is based on the quantitative colour bleaching of the dye, methylene blue by arsine catalyzed by nanoparticles in micellar medium. The arsine has been generated in situ from sodium arsenate by NaBH4 reduction. The absorbance measurement was carried out at the λmax of the dye at 660 nm. The calibration graph set-up for three linear dynamic ranges (LDR) are 0-8.63 ppm, 0-1.11 ppm and 0-0.11 ppm and limit of detections (LODs) are 1.3, 0.53 and 0.03 ppm, respectively. This method is simple, sensitive and easy to carry out. It is free from phosphate and silicate interference and applicable to real sample analysis.  相似文献   

8.
Technical Physics Letters - Results of studying the formation of InAs quantum dots (QDs) on GaAs(100) substrates by droplet epitaxy using trimethylindium and arsine (AsH3) as precursors are...  相似文献   

9.
Yan XP  Yin XB  He XW  Jiang Y 《Analytical chemistry》2002,74(9):2162-2166
A flow injection on-line sorption preconcentration and separation in a knotted reactor (KR) was coupled to hydride generation atomic fluorescence spectrometry (HG-AFS) for speciation of inorganic arsenic in natural water samples. The method involved on-line formation of the As(III)-pyrrolidinedithiocarbamate (PDC) complex over a sample acidity of 0.001-0.1 mol L(-1) HCl, its adsorption onto the inner walls of the KR made from 150-cm long x 0.5-mm i.d. PTFE tubing, elution withmol L(-1) HCl, and detection by HG-AFS. Total inorganic arsenic was determined after prereduction of As(V) to As(III) with 1% m/v L-cysteine. The concentration of As(V) was calculated by the difference of the total inorganic arsenic and As(III). A 1 mol L(-1) concentration of HCl was employed not only as the efficient eluent but also as the required medium for subsequent hydride generation. Potential factors that affect adsorption, rinsing, elution, and hydride generation were investigated in detail. The low cost, easy operation, and high sensitivity are the obvious advantages of the present system. With consumption of a 6 mL sample solution, an enhancement factor of 11 and a detection limit (3s) of 0.023 microg L(-1) As(III) were obtained at a sample throughput of 32 h(-1). The precision for 14 replicate measurements of 1 microg L(-1) As(III) was 1.3% (RSD). The recoveries from natural water samples varied from 96.7 to 105% for 2 microg L(-1) of As(III) spike and from 97.1 to 107% for 2 microg L(-1) of As(V) spike. The analytical results obtained by the present method for total arsenic in the certified reference materials, SLRS-4 (river water) and NASS-5 (seawater), agreed well with the certified values. The developed method was also successfully applied to the speciation of inorganic arsenic in local natural water samples.  相似文献   

10.
SCB-g-MMA的固相接枝制备及其吸附性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用固相接枝法将甲基丙烯酸甲酯(MMA)接枝到碱处理后的甘蔗渣(SCB)表面,得到固相接枝产物甲基丙烯酸甲酯接枝甘蔗渣(SCB-g-MMA),并通过XRD、FTIR、13 C NMR、SEM和BET(Brunauer-Emmett-Teller)测试等方法对其结构进行表征分析。将SCB-g-MMA作为亚甲基蓝(MB)的吸附剂,进行吸附性能研究。结果表明:在室温下,MB初始浓度在50~400mg/L范围内,当吸附剂投加量大于等于10g/L时,溶液pH范围在6~12,吸附时间超过40min,SCB-g-MMA对MB的去除率达到99%;当吸附剂投加量为2.5g/L时,对MB的吸附量可达97.3mg/g。SCB-g-MMA对MB吸附动力学和吸附等温线更符合准二级动力学方程和Freundlich等温吸附模型。  相似文献   

11.
Optimization of decolorization of methylene blue (MB) dye by lignin peroxidase (LiP) enzyme produced by white-rot fungus Phanerochaete chrysosporium using sewage treatment plant (STP) sludge as a major substrate was carried out in the laboratory. Optimization by the one-factor-at-a-time (OFAT) and statistical approach was carried out to determine the process conditions on optimum decolorization of MB dye using LiP enzyme in static mode. The OFAT method indicated that the optimum conditions for decolorization of MB dye (removal: 14-40%) was at temperature 55 degrees C, pH 5.0 with hydrogen peroxide (H(2)O(2)) concentration 4.0mM, MB dye concentration 20mg/L and LiP activity 0.487U/ml. The addition of veratryl alcohol to the reaction mixtures did not contribute any further increases in decolorization. The initial concentration of MB and the activity of LiP enzyme were further optimized using response surface methodology (RSM). The contour and surface plots suggested that the optimum initial concentration of MB and LiP activity predicted were 15mg/L and 0.687U/ml, respectively for the removal of 65%. The validation of the model showed that the decolorization process gave the higher removal of 90% in agitation mode compared to the static mode with 65% for 60min of incubation time by LiP enzyme.  相似文献   

12.
Amineboranes of the type L-BH3 (L = NH3; tert-BuNH2; Me2NH; Me3N) and sodium cyanotrihydroborate(III) (NaBH3CN) have been tested as derivatization reagents in the generation of volatile hydrides and elemental mercury following aqueous phase reaction with ionic species of Hg(II), As(III), As(V), Sb(V), Sb(III), Bi(III), Se(IV), Se(VI), Te(IV), and Te(VI). Continuous flow generation atomic absorption spectrometry coupled with a flameless quartz tube atomizer (T = 25 degrees C) and a miniature argon-hydrogen diffusion flame atomizer were employed for the detection of mercury vapors and volatile hydrides, respectively. All of the reductants were able to reduce Hg(II) to the elemental state, giving sensitivities comparable to NaBH4 reduction. Under reaction conditions giving maximum sensitivity for hydride generation with NaBH4, only some amineboranes are able to produce volatile hydrides from all the elements. No evidence of hydride formation was observed from the Se(VI) and Te(VI). In general, the reducing power decreased in the order NaBH4 > H3N-BH3 > tert-BuNH2-BH3 > NaBH3CN > or = Me2HN-BH3 > Me3N-BH3. In comparison with THB, amineboranes and NaBH3CN allowed, in general, a better control of interference effects of Fe(III), Ni(II), Co(II), and Cu(II). Application to determination of mercury in certified reference material is reported. The most likely mechanism of reaction of borane complexes in chemical vapor generation is based on the direct action of hydrogen bound to boron.  相似文献   

13.
铝合金表面铈锰化学转化   总被引:1,自引:0,他引:1  
张军军  李文芳  杜军 《材料保护》2012,45(6):39-42,73
以硝酸铈和高锰酸钾为主盐,在6063铝合金表面制备了Ce-Mn化学转化膜。研究了室温下成膜时间、转化液pH值、硝酸铈和高锰酸钾浓度对Ce—Mn转化膜电化学性能的影响,获得了最佳成膜工艺:7g/LCe(NO3)3,2g/LKMnO4,时间9min,pH值2.3。采用极化曲线考察了所得转化膜的耐蚀性,并通过扫描电镜和能谱仪分析了膜的表面微观形貌和组成。结果表明:Ce.Mn转化膜比6063铝合金具有更低的腐蚀电流密度和更大的极化电阻,表现出良好的耐腐蚀性能;Ce-Mn转化膜主要成分是铝、镁、铈、锰和氧。  相似文献   

14.
A coprecipitation procedure has been established for chromium speciation in natural water samples. The procedure is based on the coprecipitation of Cr(III) on thulium hydroxide precipitate. After reduction of Cr(VI) to Cr(III) by using potassium iodide, the presented method was applied to the determination of the total chromium. The level of Cr(VI) is calculated by difference of total chromium and Cr(III) levels. The procedure was optimized for some analytical parameters including pH, sample volume, matrix effects, etc. The detection limits based on 3sigma criterion were 0.87 microg L(-1) for Cr(III) and 1.18 microg L(-1) for Cr(VI). The procedure presented was validated by the analysis of BCR-144R Sewage Sludge (domestic origin). The presented method was applied for the speciation of chromium in environmental sample with satisfactory results (recoveries>95%, R.S.D.s<10%).  相似文献   

15.
The complex reactivity of the system As-AH-RSH-THB (As=As(III), As(V); AH=HCl, HClO4, CH3COOH; RSH=L-cysteine (Cys); THB=NaBH4) was investigated using continuous flow (CF) hydride generation (HG) coupled either with atomic absorption (AAS) or atomic fluorescence spectrometry (AFS). AsH3 generation was examined in the presence of Cys by varying acidity and the type of acid, the mixing sequence, and the reaction time of reagents. The strong depression of arsane generation, which is typically observed in the range of acidity of 0.2-2 M HCl, can be addressed to the low reaction rate of thiol-borane, hydroboron complexes, or both toward those As(III) substrates that are formed in the same reaction environment. The simultaneous presence of Cys-borane and As(III)-Cys species is at the origin of the gap of the arsane generation efficiency in the 0.2-2 M HCl acidity range. The selective formation of Cys-borane complexes, which are formed faster than As(III)-thiol complexes, can be achieved by a careful choice of the mixing sequence of the reagents. The simultaneous mixing of sample, Cys, and THB is able to reduce substantially the gap of the arsane generation efficiency in the 0.2-2 M HCl acidity range. These properties were employed to implement a simple method for selective determination of As(III) in samples containing inorganic arsenic: (i) Total inorganic arsenic is determined by sample treatment with 0.2 M Cys for 30 min, acidity 0.1 M HCl, followed by CF-HG-AFS; (ii) As(III) is selectively determined in 0.005 M CH3COOH in the presence of Cys using a chemifold setup allowing the simultaneous mixing of sample, 0.2 M Cys and 0.1 M THB. The selectivity, measured from the ratio between the slopes of calibration graphs As(III)/As(V), is 220. The interference effects of Cu(II), Fe(III), Ni(II), Co(II), Ag(I), Pd(II), and Pt(IV) can be kept under control using the simultaneous mixing of all the reagents. The tolerance toward the interferences was almost the same as that obtained by allowing the formation of As(III)-Cys complexes (offline sample pretreatment with Cys for 30 min). The method was tested with the application to the natural waters and mineral well waters analysis employing CF-HG-AFS.  相似文献   

16.
This work reports changes in the structural properties of sputtered GaAs layers deposited on Si (100) substrates induced by thermal annealing under different arsine atmospheres. The effects of the AsH3 partial pressure (P AsH3 ) and of the annealing temperature in the GaAs layer properties were analyzed by means of in situ reflectance spectroscopy, in situ transient reflectance at 2.65 eV, X-ray diffraction and atomic force microscopy. The results obtained reveal a direct correlation between the AsH3 partial pressure and the evolution of the GaAs surface morphology as well as the annihilation of As clusters formed during the sputtering procedure.  相似文献   

17.
Arsenic (V) is known to form heteropolyacid with ammonium molybdate in acidic aqueous solutions, which can be quantitatively extracted into certain organic solvents. In the present work, 12-molybdoarsenic acid extracted in butan-1-ol is used for quantification of As (V). Total arsenic is estimated by converting arsenic (III) to arsenic (V) by digesting samples with concentrated nitric acid before extraction. Concentration of As (III) in the sample solutions could be calculated by the difference in total arsenic and arsenic (V). The characterization of arsenic was carried out by GFAAS using Pd as modifier. Optimization of the experimental conditions and instrumental parameters was investigated in detail. Recoveries of (90-110%) were obtained in the spiked samples. The detection limit was 0.2 microg l(-1). The proposed method was successfully applied for the determination of trace amount of arsenic (III) and arsenic (V) in process water samples.  相似文献   

18.
A sensitive technique for speciation and quantification of Cr(III) and Cr(VI) has been developed using thermospray (TSP) sample introduction with inductively coupled plasma atomic emission spectrometry (ICPAES). For unacidified solutions, the sensitivity for Cr(III) was found to be lower than that for Cr(VI). The sensitivity for Cr(III) was further depressed to a negligible level by adjusting sample and thermospray operating parameters. The low sensitivity for Cr(III) was thought to result from the precipitation of that species to form Cr(OH)(3), which deposited within the vaporizer. For acidic solutions (1% v/v HNO(3)), the sensitivities for both species were essentially identical. On the basis of these results, methods for speciation of Cr(III) and Cr(VI) were developed. With samples buffered to pH 4.4, Cr(VI) could be selectively determined. With acidic sample aliquots (1% v/v HNO(3)), the total chromium concentration could also be determined, and the Cr(III) concentration could be calculated by difference. Parameters affecting Cr(III) sensitivity, such as control temperature, pH, and pump flow rate, were studied in addition to optimal TSP-ICPAES parameters. The limits of detection (LODs) for Cr(VI) and for total Cr were 0.47 and 0.61 μg/L with standard deviations of 1.5% and 2.0%, respectively. Good accuracy and precision of the method were demonstrated for analysis of spiked tap water and lake water samples. Mobile phase ion-pairing chromatography with ICPAES detection provided comparable results for moderately high concentration samples. Accuracy of measurements for Cr(VI) was within 1% of the certified value for NIST standard reference material 2109.  相似文献   

19.
Hollow fiber-protected liquid-phase microextraction of triazine herbicides   总被引:7,自引:0,他引:7  
A new microextraction technique termed hollow fiber-protected liquid-phase microextraction (LPME) was developed. Triazines were employed as model compounds to assess the extraction procedure and were determined by gas chromatography/mass spectrometry. Toluene functioned as both the extraction solvent and the impregnation solvent. Some important extraction parameters, such as effect of salt, agitation, pH, and exposure time were optimized. The new method provided good average enrichment factors of > 150 for eight analytes, good repeatability (RSDs <3.50%, n = 7), and good linearity (r2 > or = 0.9995) for spiked deionized water samples. The limits of detection (LODs) were in the range of 0.007-0.063 microg/L (S/N = 3) under selected ion monitoring mode. In addition to enrichment, hollow fiber-protected LPME also served as a technique for sample cleanup because of the selectivity of the membrane, which prevented large molecules and extraneous materials, such as humic acids in solution, from being extracted. The utilization of this procedure in the extraction of a slurry sample (mixture of soil and water) also gave good precision (RSDs <5.00%, n = 3) and LODs (0.04-0.18 microg/L, S/N = 3). Finally, the comparison of the new method with the static solvent drop LPME and solid-phase microextraction was performed. The results demonstrated that hollow fiber-protected LPME was a fast, accurate, and stable sample pretreatment method that gave very good enrichment factors for the extraction of triazine herbicides from aqueous or slurry samples.  相似文献   

20.
A novel hydride generation (HG) interface for coupling capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICPMS) is presented in this work. The CE-HG-ICPMS interface was applied to the separation and quantitation of common arsenic species. Lack of a commercially available HG interface for CE-ICPMS led to a three concentric tube design allowing alleviation of back pressure commonly observed in CE-HG-ICPMS. Due to the high sensitivity and element-specific detection of ICPMS, quantitative analysis of As(III), As(V), monomethylarsonic acid, and dimethylarsinic acid was achieved. Optimization of CE separation conditions resulted in the use of 20 mmol L(-1) sodium borate with 2% osmotic flow modifier (pH 9.0) and -20 kV applied potential for baseline resolution of each arsenic species in the shortest time. Hydride generation conditions were optimized through multiple electrophoretic separation analyses with 5% HCl and 3% NaBH(4) (in 0.2% NaOH) determined to be the optimum conditions. After completion of system optimization, detection limits obtained for the arsenic species were less than 40 ng L(-1) with electromigration time precision less than 1% within a total analysis time of 9.0 min. Finally, the interface was used for speciation analysis of arsenic in river and tap water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号