首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integration of an aqua‐ammonia inlet air‐cooling scheme to a cooled gas turbine‐based combined cycle has been analyzed. The heat energy of the exhaust gas prior to the exit of the heat recovery steam generator has been chosen to power the inlet air‐cooling system. Dual pressure reheat heat recovery steam generator is chosen as the combined cycle configuration. Air film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor–pressure ratio, compressor inlet temperature, turbine inlet temperature, ambient relative humidity, and ambient temperature on performance parameters of plants has been carried out. It has been observed that vapor absorption inlet air cooling improves the efficiency of gas turbine by upto 7.48% and specific work by more than 18%, respectively. However, on the adoption of this scheme for combined cycles, the plant efficiency has been observed to be adversely affected, although the addition of absorption inlet air cooling results in an increase in plant output by more than 7%. The optimum value of compressor inlet temperature for maximum specific work output has been observed to be 25 °C for the chosen set of conditions. Further reduction of compressor inlet temperature below this optimum value has been observed to adversely affect plant efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
范瑾  牛利涛 《电力与能源》2012,(5):433-436,440
结合西门子燃机和三菱燃机的典型配置,介绍了燃气轮发电机静态变频启动(SFC)装置的结构、工作原理和保护配置。基于燃气轮发电机SFC的步骤,分析了SFC的特点以及对发电机保护的影响。通过理解和分析低频过流保护、SFC装置直流接地保护的设计思想,提出了减少燃气轮发电机SFC过程中,防止发电机差动保护、频率保护和逆功率保护误动的措施,实际运行表明这些技术措施是可行的。  相似文献   

3.
[目的]为了降低燃机电厂初期投资,在保证机组安全的同时,通过黑启动功能获取广东辅助服务经济补贴,提出了扩建燃机时采用多台柴油发电机组的配置方案,用于9F机组事故停机保安电源,同时又作为原9E机组黑启动电源。[方法]为了实现技术经济最优化,通过柴油发电机组配置及厂用电接线的多方案比选论证,给出了合理配置方案。并对推荐方案的事故停机控制逻辑以及黑启动控制逻辑进行论述。[结果]通过黑启动试验结果表明,各电气量均满足规范要求,推荐方案能满足黑启动功能并通过电网公司验证。[结论]多台柴油机同时用于黑启动及保安功能的方案,为今后燃机电厂黑启动及保安电源工程设计提供参考及借鉴。  相似文献   

4.
为研究风气互补发电系统对电网的影响,首先搭建了由风电机组、燃气轮机、电网线路、静止无功补偿器、电力系统稳定器和大型水力发电机组成的仿真系统,并对该系统的负载侧和电网线路中部节点进行了稳定性分析。仿真结果表明,电网在加载了风气互补系统后运行能保持稳定,并能在发生短时故障后恢复到原来状态。该文为进一步研究风气互补系统与电网的相互影响提供了良好的模型基础。  相似文献   

5.
《Energy》2004,29(8):1183-1205
This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection.  相似文献   

6.
The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n×1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of São Paulo, São Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters.  相似文献   

7.
This paper focuses on novel integration of high temperature solid oxide fuel cell coupled with recuperative gas turbine (with air-film cooling of blades) based hybrid power plant (SOFC-blade cooled GT). For realistic analysis of gas turbine cycle air-film blade cooling technique has been adopted. First law thermodynamic analysis investigating the combine effect of film cooling of blades, SOFC, applied to a recuperated gas turbine cycle has been reported. Thermodynamic modeling for the proposed cycle has been presented. Results highlight the influence of film cooling of blades and operating parameters of SOFC on various performance of SOFC-blade cooled GT based hybrid power plant. Moreover, parametric investigation has also been done to examine the effect of compressor pressure ratio, turbine inlet temperature, on hybrid plant efficiency and plant specific work. It has been found that on increasing turbine inlet temperature (TIT) beyond a certain limit, the efficiency of gas turbine starts declining after reaching an optimum value which is compensated by continuous increase in SOFC efficiency with increase in operating temperature. The net result is higher performance of hybrid cycle with increase in maximum cycle temperature. Furthermore, it has been observed that at TIT 1600 K and compression ratio 20, maximum efficiency of 73.46% can been achieved.  相似文献   

8.
The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant.This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method’s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant.  相似文献   

9.
《Energy》1999,24(9):783-793
The aggressive nature of the flue gases in municipal waste incinerators does not allow the temperature of steam in the boiler to rise above 400°C. An increase in steam temperature can be achieved by external superheating in a heat recovery steam generator positioned behind a gas turbine, so that steam of a higher energy content becomes available for electricity production. The paper addresses two basic schemes. In one case, steam generated at a waste-to-energy plant is superheated in a combined-cycle plant that operates in parallel. In the other case, the exhaust from a gas turbine plant is sent through a superheater section to the waste incinerator's boiler providing preheated combustion air. Performance of these configurations together with two modified schemes was analyzed in terms of efficiency, natural gas consumption and boiler surface area. An exergy analysis of the cases was carried out. The results showed that the integrated options can effect a substantial increase in efficiency. The hot windbox configuration was found the most effective solution, offering a smaller boiler surface area along with a moderate rate of natural gas consumption.  相似文献   

10.
Integrating fuel cells with conventional gas turbine based power plant yields higher efficiency, especially solid oxide fuel cell (SOFC) with gas turbine (GT). SOFCs are energy efficient devices, performance of which are not limited to Carnot efficiency and considered as most promising candidate for thermal integration with Brayton cycle. In this paper, a novel and optimal thermal integration of SOFC with intercooled-recuperated gas turbine has been presented. A thermodynamic model of a proposed hybrid cycle has been detailed along with a novelty of adoption of blade cooled gas turbine model. On the basis of 1st and 2nd law of thermodynamics, parametric analysis has been carried out, in which impact of turbine inlet temperature and compression ratio has been observed on various output parameters such as hybrid efficiency, hybrid plant specific work, mass of blade coolant requirement and entropy generation rate. For optimizing the system performance, entropy minimization has been carried out, for which a constraint based algorithm has been developed. The result shows that entropy generation of a proposed hybrid cycle first increases and then decreases, as the turbine inlet temperature of the cycle increases. Furthermore, a unique performance map has also been plotted for proposed hybrid cycle, which can be utilized by power plant designer. An optimal efficiency of 74.13% can be achieved at TIT of 1800 K and rp,c 20.  相似文献   

11.
Renewable energy power plants, such as wind turbine generator and photovoltaic system, have been introduced in isolated power system recently. The output power fluctuations of wind turbine generator and load deviations result in frequency deviation and terminal voltage fluctuation. Furthermore, these power fluctuations also affect the turbine shafting of diesel generators and gas‐turbine generators, which are the main components of power generation systems in isolated islands. For stable operation of gas‐turbine generator, the torsional torque suppression as well as power system stabilization should be considered. In this paper, the control strategy that achieves torsional torque suppression and power system stabilization is presented based on H control theory. The effectiveness of the proposed control system is validated by numerical simulation results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000 kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO2), carbon dioxide (CO2) and nitrogen oxides (NOx).  相似文献   

13.
Thermal efficiency of a combined cycle power plant depends strongly on a heat recovery steam generator (HRSG), which is the link between the gas turbine‐based topping cycle and steam turbine‐based bottoming cycle. This work is based upon the design of physical parameters of a HRSG. In this article, the physical parameters of a HRSG have been considered to study their implications on HRSG design by comparing the existing plant design with an optimized plant design. Thermodynamic analysis of HRSG for the two designs gives important outcomes which are useful for power plant designers. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21106  相似文献   

14.
以某燃气-蒸汽联合循环电站的主要配置 基础,计算并分析比较了在改变燃料 量和调节压气机可转导叶等不同调控方案对燃气-蒸联合循环各3个组成部分及总体性能的影响,从而为燃气-蒸汽联合循环电站合理选择燃气轮机调控方案提供有意义的参考。  相似文献   

15.
Inlet cooling is effective for mitigating the decrease in gas turbine performance during hot and humid summer periods when electrical power demands peak, and steam injection, using steam raised from the turbine exhaust gases in a heat recovery steam generator, is an effective technique for utilizing the hot turbine exhaust gases. Biomass gasification can be integrated with a gas turbine cycle to provide efficient, clean power generation. In the present paper, a gas turbine cycle with fog cooling and steam injection, and integrated with biomass gasification, is proposed and analyzed with energy, exergy and exergoeconomic analyses. The thermodynamic analyses show that increasing the compressor pressure ratio and the gas turbine inlet temperature raises the energy and exergy efficiencies. On the component level, the gas turbine is determined to have the highest exergy efficiency and the combustor the lowest. The exergoeconomic analysis reveals that the proposed cycle has a lower total unit product cost than a similar plant fired by natural gas. However, the relative cost difference and exergoeconomic factor is higher for the proposed cycle than the natural gas fired plant, indicating that the proposed cycle is more costly for producing electricity despite its lower product cost and environmental impact.  相似文献   

16.
本文通过简要介绍某航改型燃气轮机发电机组的结构组成、主要性能指标及技术水平等现状,反映出该燃气轮机发电机组能够满足通信行业标准性能参数要求及通信设备应急供电需求。对比柴油机发电机组,分析了该燃气轮机发电机组在结构性能、经济性及应用前景等方面的优势,表明了某航改型燃气轮机发电机组应用于通信电源系统更加胜任,更加符合未来发展趋势。  相似文献   

17.
《Energy》2004,29(11):1659-1672
The Indian wave energy plant is based on the Oscillating Water Column (OWC) principle at Vizhinjam, Kerala and has been a technology demonstration plant. A scheme was envisaged wherein the impulse turbine existing on the caisson is connected to a variable speed alternator to run a desalination plant as load. A methodology has been established to forecast the performance of the turbine, alternator, battery and inverter by means of a simulated wave profile and differential pressure. Actual testing of the scheme was carried out in the laboratory and the scheme was found to be successful. New control logic was introduced, whereby the desalination plant can be run using either the supply from wave power or, during low wave conditions, by electricity board supply or a diesel generator to ensure a continuous supply of fresh water. The scheme for running the reverse osmosis (RO) based desalination plant using wave power has thus been proved and the system has been successfully commissioned.  相似文献   

18.
This paper presents a model of a wind power plant for isolated locations composed of a vertical axis wind turbine connected to a self-excited induction generator operating at constant voltage and frequency; a back-up diesel generator and a battery system are moreover included in the system. Constant voltage and frequency are obtained only by controlling the generator appropriately. The control system is supposed to be optimised so that the system operates at the highest efficiency. In order to improve the total efficiency even further, a gear-box to vary the gear transmission ratio between the turinbe and the generator has been considered. A “Monte Carlo” type simulation has been used to analyse the operation of that system over a one year period. The model is based on a probability density function of the wind speed derived by statistical data concerning a given location and on the probabilistic curve of the load required by an isolated location. The cost per kWh for different dimensions of the main components has been evaluated and the optimum configuration has been identified.  相似文献   

19.
《Applied Thermal Engineering》2003,23(17):2169-2182
This paper shows a possible way to achieve a thermoeconomic optimization of combined cycle gas turbine (CCGT) power plants. The optimization has been done using a genetic algorithm, which has been tuned applying it to a single pressure CCGT power plant. Once tuned, the optimization algorithm has been used to evaluate more complex plants, with two and three pressure levels in the heat recovery steam generator (HRSG).The variables considered for the optimization were the thermodynamic parameters that establish the configuration of the HRSG.Two different objective functions are proposed: one minimizes the cost of production per unit of output and the other maximizes the annual cash flow. The results obtained with both functions are compared in order to find the better optimization strategy.The results show that it is possible to find an optimum for every design parameter. This optimum depends on the selected optimization strategy.  相似文献   

20.
冷热电联供系统主要应用于大型集中性供能系统中。作为分布式能源的一种,冷热电联供系统具有节约能源、改善环境、提高电力综合效益的优势。一般情况下,三联供系统是以天然气为燃料带动燃气轮机、微燃机或内燃机发电机等燃气发电设备运行,产生的电力供应用户的电力需求,系统发电后排出的余热通过余热回收利用设备(余热锅炉或者余热直燃机等)向用户供热、供冷。通过这种方式提高整个系统的一次能源利用率,实现能源的梯级利用,还可以提供并网电力作能源互补,经济收益和效率均得以提升。研究较为常见的燃气轮机中的一种蒸汽型吸收式冷热电联产系统,对不同配置方式和运行方式进行横向与纵向交叉比较,以完成系统优化研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号