首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, bamboo fiber/high‐density polyethylene (HDPE) composites were prepared, and the effects of nano‐TiO2 on their thermal properties and crystallization behavior were investigated via thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results show that the addition of nano‐TiO2 improved the thermal stability and had a dual function in the crystallization behavior of the composites. On one hand, it functioned as a nucleating agent. The addition of 2 wt % nano‐TiO2 promoted the crystallization, which caused the increase of the crystallization rate and crystallinity degree, as well as the micronization of the crystalline grain. On the other hand, intermolecular hydrogen bonds and covalent bonds were formed between nano‐TiO2 and the polymer matrix, which hindered the crystallization of the composites. When the content of nano‐TiO2 was continually increased, the inhibitory effect of the crystallization was gradually enhanced, which resulted in a decrease in the crystallization rate and crystallinity degree of the composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39846.  相似文献   

2.
Polyaniline/nano‐TiO2 composites with the content of nano‐TiO2 varying from 6.2 wt % to 24.1 wt % were prepared by using solid‐state synthesis method at room temperature. The structure and morphology of the composites were characterized by the Fourier transform infrared (FTIR) spectra, ultraviolet‐visible (UV–vis) absorption spectra, X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electrochemical performances of the composites were investigated by galvanostatic charge–discharge measurement, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results from FTIR and UV–vis spectra showed that the composites displayed higher oxidation and doping degree than pure PANI. The XRD and morphological studies revealed that the inclusion of nano‐TiO2 particles hampered the crystallization of PANI chains in composites, and the composites exhibited mixed particles from free PANI particles and the nano‐TiO2 entrapped PANI particles. The galvanostatic charge–discharge measurements indicated that the PANI/nano‐TiO2 composites had higher specific capacitances than PANI. The composite with 6.2 wt % TiO2 had the highest specific capacitance among the composites. The further electrochemical tests on the composite electrode with 6.2 wt % TiO2 showed that the composite displayed an ideal capacitive behavior and good rate ability. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
The photodegradation of the silicone surfactant–TiO2 composite films was characterized by FTIR, Raman spectroscopy, and scanning electron microscope. After photocatalytic degradation, the FTIR Si? O? Si peak intensity of the composite film remained unchanged, implying no cleavage of Si? O? Si bond. The above Si? O? Si peak intensity is sensitive to the polyoxyethylene chain length of the composite. The PEG10000‐silicone composite is more resistant to photodegradation than those composites with lower molecular weight of constituent PEGs. The wetting rates of the silicone surfactant–TiO2 composites showed that modified silicone composite films exhibited hydrophobic nature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3341–3344, 2006  相似文献   

4.
《Ceramics International》2016,42(16):18393-18401
This paper reports a comparative assessment of the chemical and structural stability of LSCM perovskite composites fabricated with 8YSZ and 10ScSZ. Role of oxidizing and reducing atmospheres are examined on the processing and electrochemical performance of the composites. Higher density is obtained during the sintering of LSCM mixed with 10ScSZ when compared to composite mixtures containing 8YSZ in oxidizing as well as reducing atmosphere. Above composites also densified more in Ar-3%H2-3%H2O atmosphere than air along with the formation of SrZrO3 in reducing atmosphere. MnCr2O4 formation is found only in LSCM-8YSZ composite in Ar-3%H2-3%H2O. Electrochemical tests conducted using symmetric cell configurations indicates low polarization resistance and higher performance for Gas (air/fuel)/LSCM-10ScSZ//8YSZ/LSCM-10ScSZ/Gas (air/fuel). Unlike cell containing LSCM-8YSZ composite, no significant changes are identified in the polarization resistance of LSCM-10ScSZ cell for 80 h. Sr-segregation on the surface of LSCM in electrically tested LSCM-8YSZ cell is attributed to performance degradation in the reducing atmosphere.  相似文献   

5.
Al2O3/Ba-β-Al2O3/ZrO2 composites were fabricated by solid-state reaction sintering of Al2O3, BaZrO3, and yttria stabilized zirconia (YSZ) powders. The effects of YSZ addition on microstructure and mechanical properties have been investigated. The incorporation of YSZ promoted the densification of the composites and formation of tetragonal ZrO2 phase. The microstructure of the composites was characterized by elongated Ba-β-Al2O3 phase and equiaxed ZrO2 particles including added YSZ and reaction-formed ZrO2. The Al2O3/Ba-β-Al2O3/ZrO2 composites with YSZ addition exhibited improved fracture toughness, as a result of multiple toughening effects including crack deflection, crack bridging, crack branching, and martensitic transformation of ZrO2 formed by the reactions between Al2O3 and BaZrO3. Moreover, owing to the grain refinement of Al2O3 matrix, dispersion strengthening of the added YSZ particles, and an increase in density of the composites, the Vickers hardness and flexural strength of Al2O3/Ba-β-Al2O3/ZrO2 composites were dramatically enhanced in comparison with the composites without YSZ addition.  相似文献   

6.
Polyaniline nanocomposite films were chemically synthesized in the presence of alginate template by varying the concentration of TiO2 in the composites. Characterization of the composite samples by FTIR, UV‐Vis spectra (UV), and X‐ray diffraction (XRD) indicates the formation of polyaniline‐alginate/titanium dioxide (PAT) composites. The morphology analysis by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) also supports the formation of the composites. Temperature‐dependent DC conductivity of the polyaniline‐alginate (PA) and PAT composites was studied in the range of 300 ≤ T ≤ 500 K. UV‐Vis and FTIR spectral studies reveal that the alginate is a good template for the chemical interaction between polyaniline and TiO2, which suggests that the micelles formed by the anilinium‐alginate cations containing TiO2 are responsible for the transport properties of the PAT composites. POLYM. COMPOS., 31:1754–1761, 2010. © 2010 Society of Plastics Engineers.  相似文献   

7.
Polyaniline/TiO2?SiO2 composites were prepared by an in situ chemical oxidation polymerization approach in the presence of hybrid TiO2?SiO2 fillers. The obtained polyaniline/TiO2?SiO2 composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FTIR), X‐ray diffraction (XRD), thermogravimetry (TG), and current?voltage (I?V) measurements. SEM picture shows a variation in morphology of polyaniline (PANI) from fiber shape to relatively regular particle shape with increasing TiO2?SiO2 contents in the composites. The floccule‐like structures were observed by high resolution TEM, which may help improve the efficiency of conductive network. SEM, XRD, TG, and FTIR spectra all reveal that a relatively strong interaction exist between TiO2?SiO2 and PANI. The I?V characteristics in such composites indicate that the charge transport is mainly governed by the space charge effects, which occurs at the interface between the conducting PANI and TiO2?SiO2. Meanwhile, PANI/TiO2?SiO2 composites exhibit significant increase in conductivity than PANI/TiO2 or PANI/SiO2. The reasons about high conductivity of PANI/TiO2?SiO2 have also been discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2288–2295, 2013  相似文献   

8.
Novel ferromagnetic semiconducting polyaniline PANI/TiO2 nanocomposites were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous medium, in the presence of colloidal TiO2 nanoparticles (d ∼ 4.5 nm), without added acid. The morphological, magnetic, structural, and optical properties of the PANI/TiO2 nanocomposites prepared at initial aniline/TiO2 mole ratios 80, 40, and 20 were studied by scanning electron microscopy, superconducting quantum interference device, X‐ray powder diffraction, FTIR, Raman, and UV‐Vis spectroscopies. The emeraldine salt form of linear PANI chains as well as the presence of phenazine units, branched PANI chains, and anatase crystalline structure of TiO2 in PANI/TiO2 nanocomposites was confirmed by FTIR and Raman spectroscopies. The electrical conductivity of synthesized composites was ∼10−3 S cm−1. The room temperature ferromagnetic response with coercive field of Hc ∼ 300 Oe and the remanent magnetization of Mr ∼ 4.35 × 10−4 emu/g was detected in all investigated PANI/TiO2 nanocomposites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
Different proportions of nanoscale TiO2 (nano‐TiO2)‐filled polybutylene succinate (PBS) composites were prepared by vane extruder. The crystalline, thermal, dynamic viscoelastic, mechanical, and UV‐resistance properties of the composites were studied, and X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis were conducted. Results show that the crystalline structure of the PBS composites did not change with TiO2 addition. TiO2 almost has no effect on the crystallization and melting behavior of PBS. Nevertheless, the introduction of TiO2 has improved the thermal stability, tensile modulus, flexural modulus, and flexural strength of the PBS composites. The UV resistance of the composites has also been significantly enhanced with TiO2 addition. POLYM. COMPOS., 35:53–59, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
The electrochemical promotion of Pt/YSZ and Pt/TiO2/YSZ catalyst-electrodes has been investigated for the model reaction of C2H4 oxidation in an atmospheric pressure single chamber reactor, under oxygen excess between 280 and 375 °C. It has been found that the presence of a dispersed TiO2 thin layer between the catalyst electrode and the solid electrolyte (YSZ), results in a significant increase of the magnitude of the electrochemical promotion of catalysis (EPOC) effect. The rate enhancement ratio upon current application and the faradaic efficiency values, were found to be a factor of 2.5 and 4 respectively, higher than those in absence of TiO2. This significantly enhanced EPOC effect via the addition of TiO2 suggests that the presence of the porous TiO2 layer enhances the transport of promoting O2− species onto the Pt catalyst surface. This enhancement may be partly due to morphological factors, such as increased Pt dispersion and three-phase-boundary length in presence of the TiO2 porous layer, but appears to be mainly caused by the mixed ionic-electronic conductivity of the TiO2 layer which results to enhanced O2− transport to the Pt surface via a self-driven electrochemical promotion O2− transport mechanism.  相似文献   

11.
A novel thermal‐sensitive polyurethane (TSPU)/TiO2 nanohybrid membrane was successfully prepared via in situ process and used for controllable water vapor permeation. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) were employed to reveal the nanohybrid mechanism between TSPU and TiO2 and the thermal sensitive characteristics of TSPU/TiO2 nanohybrid membranes. FTIR analysis demonstrates that the highly active nano‐TiO2 particles produced by the hydrolysis of the nanoprecursor (tetrabutyl titanate) have reacted with the active groups of TSPU. And some new peaks assigned to the Ti? O? C, Ti? C, and Ti? O? Ti bonds occur in the FTIR spectra of TSPU/TiO2 nanohybrid membrane; these chemical bonds are believed to contribute to the higher mechanical properties of nanohybrid samples. DSC study indicates that nanohybridization does not disrupt the intrinsic phase‐separated structures and thermal‐sensitive characteristics of pure TSPU, the difference in behavior is the phase transition temperature (defined as switch temperature, Ts) of the reversible phase shifting from 50.1 to 53.4°C. SEM analysis shows that the nano‐TiO2 particles are evenly distributed in TSPU and the size of the nano‐TiO2 is lower than 100 nm. In addition, the water vapor permeability (WVP) of nanohybrid membrane is found to depend on the TiO2 content. To be specified, when TiO2 content is lower than 5.0 wt %, the nanohybrid samples show lower WVP at low temperatures and higher WVP at high temperatures than pure TSPU. Especially, when the temperature exceeds the Ts, for example from 50 to 60°C, the WVP of pure TSPU show improvement by 114%, whereas the WVP of the nanohybrid TSPU with 5.0 wt % TiO2 content shows improvement by 145%, the latter shows more sensitivity to thermal stimuli. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Highly functionalized thermoresponsive composites in which two kinds of functional inorganic particles and thermoresponsive polymer work concertedly were prepared. In this study, poly(N‐isopropylacrylamide) and calcium alginate were used as the thermoresponsive polymer and structure support polymer, respectively. TiO2 and Fe3O4 were used as functional inorganic nanoparticles. The thermoresponsive functional composites were prepared using a single‐tube nozzle by modifying the simple process to prepare microcapsules reported in our previous study. The experimental results showed that the TiO2/Fe3O4‐embedded thermoresponsive composites were successfully obtained. The resulting composites exhibited thermoresponsive volume change and photocatalytic activity. Localized heating of the thermoresponsive bead containing Fe3O4 was also achieved by applying an alternating current (AC) magnetic field on the bead. Because of the localized heating property, repeated shrinking‐swelling movement (i.e., pumping movement) of the composite was achieved by applying an AC magnetic field intermittently. Finally, based on the experimental results, the effect of the promoted mass transfer of the substrate and product due to thermoresponsive pumping on the enhancement of the apparent photocatalytic activity was simulated. The results showed the effectiveness of thermoresponsive pumping in improving the apparent photocatalytic activity of TiO2 nanoparticles embedded in the composite gel. POLYM. COMPOS., 37:2293–2300, 2016. © 2015 Society of Plastics Engineers  相似文献   

13.
Photodegradable polypropylene (PP) composites were prepared via melting blending using PP and titanium dioxide (TiO2) immobilized organically modified montmorillonite (organoclay). TiO2 immobilized organoclay (TiO2‐OMT) was synthesized by immobilizing anatase TiO2 nanoparticles on organically modified clay via sol–gel method. The structure and morphology of TiO2‐OMT were characterized by XRD and scanning electron microscope (SEM), which showed that anatase TiO2 nanoparticles with the size range of 8–12 nm were uniformly immobilized on the surface of organoclay layers. Diffuse reflection UV–vis spectra revealed TiO2‐OMT had similar absorbance characters to that of commercial photocatalyst, Degussa P25. The solid‐phase photocatalytic degradation of PP/TiO2‐OMT composites was investigated by FTIR, DSC, GPC and SEM. The results indicated that TiO2‐OMT enhanced the photodegradation rate of PP under UV irradiation. This was due to that immobilization of TiO2 nanoparticles on organoclay effectively avoided the formation of aggregation, and thereby increased the interface between PP and TiO2 nanoparticles. After 300 h irradiation, the average molecular weight was reduced by two orders of magnitude. This work presented a promising method for preparation of environment‐friendly polymer nanocomposites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

14.
The luminescent europium complex Eu(phen)2 Cl3(H2O)2 (phen refers to 1,10‐phenanthroline) was doped in poly(methyl methacrylate) (PMMA) and polyvinylpyrrolidone (PVP), respectively. The formed composite systems with different molar ratios of C?O groups in polymers and Eu ions were characterized by X‐ray diffractometry (XRD), FTIR, and photoluminescent (PL) spectroscopy and lifetime measurement. The XRD diffractograms show that the composites of PMMA/Eu(phen)2Cl3(H2O)2 and PVP/Eu (phen)2Cl3(H2O)2 have crystalline and amorphous structures, respectively, arising from different interactions between the polymers and the complex, as revealed by FTIR spectra. This leads to distinct luminescent characteristics arising from the 5D07FJ transitions of Eu(III) ion (J = 0–4). For the composite systems of PMMA/complex, the characteristics of the emission lines change with decreasing molar ratios of C?O/Eu and approach that of the pure complex; whereas the composite systems of PVP/complex have similar spectral features, regardless of the molar ratios, differing from that of the pure complex. The polymer matrices have a substantial influence on the structure and properties of the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3524–3530, 2004  相似文献   

15.
Composite membranes of poly(vinylidene‐trifluoroethylene)/titanium dioxide (PVDF‐TrFE/TiO2) were prepared by the solution cast method. The crystallization behavior and dielectric properties of the composites with TiO2 calcined at different temperatures were studied. Transmission electron microscopy and X‐ray diffraction (XRD) results showed that the TiO2 nanoparticles calcined at different temperatures were well dispersed in the polymer matrix and did not affect the structure of the PVDF‐TrFE matrix. XRD and differential scanning calorimeter measurements showed that the crystallinity of PVDF‐TrFE/TiO2 composites increased as the addition of TiO2 with different calcination temperatures. The dielectric property testing showed that the permittivity of PVDF‐TrFE/TiO2 membrane increased rapidly with the increase of TiO2 content and the calcination temperature of TiO2 at constant TiO2 content, but the dielectric loss did not change much. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The correspondence between the theoretical model and the experimental results of the dielectric response in two‐phase composites of Ba0.5Sr0.5TiO3 and Mg2AO4 (A = Ti, Si)was studied. The Ba0.5Sr0.5TiO3 (BST50)/Mg2AO4 composites in 2‐2 model structure consisting of BST50 layers and Mg2AO4 layers were fabricated by tape casting and multilayer technique. The 3‐0 model of the two‐phase composites is fabricated by conventional ball mill mixing and solid‐state reaction process. The ceramics samples with dense structure were obtained because the coefficient of thermal expansion (CTE) of Mg2SiO4 (12.84 ppm/°C) and Mg2TiO4 (12.11 ppm/°C) ceramic specimens are close to the pure BST50(13.15 ppm/°C) ceramic. The microstructure, dielectric, and tunable properties of 2‐2 and 3‐0 model composites were investigated. The experimental results agree well with the theoretical prediction in 2‐2 model. An important feature of 2‐2 model composites is that the DC field is efficiently applied to the high‐permittivity ferroelectric phase. With the increase in Mg2AO4 volume fraction q, the tunability of the composite remains almost unchanged whereas the permittivity greatly reduced in the 2‐2‐//model. These results show that the 2‐2‐//model sample is good candidates for the tunable devices.  相似文献   

17.
The purpose of this article is to investigate the effects of nano‐tianium dioxide (nano‐TiO2) on the high‐amylose starch/polyvingl alcohol (PVA) blend films prepared by a solution casting method. The results show that at the concentration of 0.6% of nano‐TiO2, the film demonstrated the best tensile strength at 9.53 MPa, and the elongation at break was noted as 49.50%. The optical transmittance of the film was decreased and the water resistance was improved with further increase of the concentration of nano‐TiO2. Using the techniques of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and field‐emission scanning electron microscopy (SEM), the molecular and the crystal structures of the films were characterized. The results indicate that the miscibility and compatibility between high‐amylose starch and PVA were increased with the addition of nano‐TiO2 into the films due to the formation of hydrogen and C? O? Ti bonds. The antimicrobial activities of the blend films were also explored. The results show that there were inhibitory zones around the circular film disc, which is attributable to the addition of nano‐TiO2. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42339.  相似文献   

18.
In this study, nano sized zinc borate powder with a formula of 4ZnO·B2O3·H2O was synthesized using 2ZnO·3B2O3·3.0–3.5H2O as a starting chemical which was produced using a wet chemical method. After dissolving 2ZnO·3B2O3·3.0–3.5H2O in an ammonia solution, the clear solution was boiled until a white powder formed. The resultant powder was characterized with XRD, FTIR, TGA and TEM. XRD, FTIR and TGA results proved that the powder was belonged to the 4ZnO·B2O3·H2O. Nano composites of 4ZnO·B2O3·H2O–polyvinylchloride (PVC) were produced by injection moulding by adding 1 and 5 wt% zinc borate powders into PVC to enhance its flame retardancy. Limiting oxygen index (LOI) of virgin PVC increased from 41% to 47% and 54% for the 1 and 5 wt% zinc borate added PVC, respectively. Nano zinc borate addition into the PVC does not have considerable negative effect on the mechanical properties of zinc borate–PVC composites even at high amounts of 5 wt%.  相似文献   

19.
The nylon 6‐based composite materials containing untreated and surface‐treated TiO2 particles with 3‐aminopropyltriethoxysilane (APTEOS), as coupling agent were prepared by in situ anionic polymerization of ε‐caprolactam in the presence TiO2 as a filler using the rotational molding technique. The thermal behavior and mechanical properties of the neat nylon 6 and its composites were investigated using various techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), a tensile and flexural test and impact strength. Experimental results revealed that both untreated and surface‐modified TiO2 had distinct influence on the melting temperature (Tm), crystallization temperature (Tc), and degree of crystallinity (αDSC), thermal stability, storage modulus (E′), and loss factor (tan δ), and mechanical properties of nylon 6 matrix. Dynamical mechanical analysis indicated that addition of TiO2 particles into nylon 6 matrix increased both the storage modulus and the glass transition temperature. The corresponding values of nylon 6 composites with modified filler were higher than that of nylon 6 composite with untreated TiO2 particles. Tensile and flexural characteristics of the nylon 6 composites were found to increase while the elongation at break and impact strength with increase in TiO2 concentration relative to neat nylon 6. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
The influence of TiO2 amount on the microstructure and relevant properties of SiO2-Al2O3-B2O3-Na2O-Li2O-BaO vitrified bond and vitrified bond CBN composites were systematically studied via SEM, EDS, FTIR, and XPS. Results indicated that adding TiO2 could regulate the quantity of β-quartz solid solution and rutile crystals in the vitrified bond and considerably affect the thermal properties and mechanical strength of this bond. Under sintering temperature, the dense B2O3 oxide layer on the CBN surface diffused into vitrified bond and reacted with Ti4+ enriched at the interface to form a strong chemical Ti-B bond. This reaction extensively improved the interfacial wettability between the CBN and the vitrified bond. When the TiO2 amount was 6wt.%, the interfacial wettability significantly improved, and the wetting angle decreased from 68° to 43°. The flexure strength and hardness of the composites were 116.18 MPa and 128 HRB, which were 48.49% and 34.74% higher than those of the basic-formula composites, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号