首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A volatility diagram of zirconium carbide (ZrC) at 1600, 1930, and 2200°C was calculated in this work. Combining it with the existing volatility diagrams of ZrB2 and SiC, the volatility diagram of a ternary ZrB2‐SiC‐ZrC (ZSZ) system was constructed in order to interpret the oxidation behavior of ZSZ ceramics. Applying this diagram, the formation of ZrC‐corroded and SiC‐depleted layers and the oxidation sequence of each component in ZSZ during oxidation and ablation could be well understood. Most of the predictions from the diagrams are consistent with the experimental observations on the oxidation scale of dense ZrB2‐SiC‐ZrC ceramics/coatings after oxidation at 1600°C or ablation at 1930 and 2200°C. The reasons for the discrepancy are also briefly discussed.  相似文献   

2.
Porous cordierite/SiC ceramics were fabricated by in situ reaction bonding using α‐SiC, α‐Al2O3, and MgO powders as the starting materials. During sintering, part SiC is oxidized to SiO2 and then the latter reacts with Al2O3 and MgO to form cordierite. As a result, porous cordierite/SiC ceramics were obtained, and the ceramics are strengthened by the residual SiC. Due to the large volume expansion introduced by the oxidation of SiC, the ceramics exhibit small sintering‐induced dimension variations. In addition, a fine‐grained microstructure and good thermal and mechanical properties were obtained for the porous cordierite/SiC ceramics.  相似文献   

3.
To protect the carbon/carbon (C/C) composites from oxidation, an outer ultra‐high‐temperature ceramics (UHTCs) HfB2‐SiC coating was prepared on SiC‐coated C/C composites by in situ reaction method. The outer HfB2‐SiC coating consists of HfB2 and SiC, which are synchronously obtained. During the heat treatment process, the formed fluid silicon melt is responsible for the preparation of the outer HfB2‐SiC coating. The HfB2‐SiC/SiC coating could protect the C/C from oxidation for 265 h with only 0.41 × 10?2 g/cm2 weight loss at 1773 K in air. During the oxidation process, SiO2 glass and HfO2 are generated. SiO2 glass has a self‐sealing ability, which can cover the defects in the coating, thus blocking the penetration of oxygen and providing an effective protection for the C/C substrate. In addition, SiO2 glass can react with the formed HfO2, thus forming the HfSiO4 phase. Owing to the “pinning effect” of HfSiO4 phase, crack deflecting and crack termination are occurred, which will prevent the spread of cracks and effectively improve the oxidation resistance of the coating.  相似文献   

4.
The development of new ultra‐high temperature ceramics for thermal protection system (TPS) of hypersonic cruise and re‐entry vehicles requires performance‐qualification testing under simulated flight conditions. The present work, encompassing experiments and computational analysis, critically analyzes the thermo‐oxidative‐structural stability of flat surface disks of spark plasma sintered ZrB2–18SiC–xTi composites (x=0, 10, 20; composition in wt%) under arc jet flow with heat flux of 2.5 MW/m2 for 30 seconds. Such testing conditions effectively simulate the aero‐thermal environment in ground facility, as experienced by hypersonic vehicles. Based on the extensive XRD, SEM‐EDS and electron probe microanalyzer based analysis of the surface/sub‐surface of arc jet exposed ceramics, the oxidation mechanisms are qualitatively discussed. Importantly, thick oxide layers (~400‐950 μm) were found to be adherent, thereby providing good structural stability of such ceramics for reusable TPS. The careful finite element (FE) analysis with high quality structural elements, being generated using HyperMesh, was conducted to understand the underlying reasons for observed oxidation. Such analysis allows us to determine the temporal evolution of through‐thickness temperature distribution. FE‐based calculations were subsequently validated using experimentally measured backwall temperatures. The thermodynamic feasibility of competing oxidation reactions at the analytically computed front wall temperatures was thereafter realistically assessed to support the oxidation mechanisms. Taken together, the present work provides guidelines for better understanding of the thermo‐oxidative‐structural stability of ceramics under arc jet testing and also establishes the good stability of ZrB2–18SiC–20Ti composites for potential application in TPS of hypersonic space vehicles.  相似文献   

5.
The oxidation behavior of ZrB2–SiC‐graphite composites under low oxygen partial pressures of 500 and 1500 Pa at 1800°C was investigated. The phase composition and microstructure of the oxidized scale were characterized using TEM, SEM, XRD, XPS, EDS. The analytical results indicated that a low oxygen partial pressure had a remarkable effect on the oxidation mechanism of ZrB2–SiC‐graphite composites. When oxidized at 1500 Pa, the oxidation kinetics was controlled by the rate of oxygen diffusion into the composite. When the composite was oxidized at 500 Pa, control of the oxidation kinetics changed from the rate of oxygen diffusion to the rate of the oxidation reaction. The rate of oxidation decreased with decreasing oxygen partial pressure. Higher partial pressures of oxygen resulted in less oxidation resistance by the ZrB2–SiC‐graphite composites.  相似文献   

6.
In this study, calcium lanthanum sulfide (CaLa2S4, CLS) ceramics with the cubic thorium phosphate structure were sintered at different temperatures by field‐assisted sintering technique (FAST). Densification behavior and grain growth kinetics were studied through densification curves and microstructural characterizations. It was determined that the densification in the 850°C‐950°C temperature range was controlled by a mixture of lattice or grain‐boundary diffusion, and grain‐boundary sliding. It was revealed that grain‐boundary diffusion was the main mechanism controlling the grain growth between 950°C and 1100°C. The infrared (IR) transmittance of the FAST‐sintered CLS ceramics was measured and observed to reach a maximum of 48.1% at 9.2 μm in ceramic sintered at 1000°C. In addition, it was observed that the hardness of the CLS ceramics first increased with increasing temperature due to densification, and then decreased due to a decrease in dislocations associated with grain growth.  相似文献   

7.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

8.
This basic research deals with the microstructure evolution of a W‐doped ZrB2 ceramic, as‐sintered and upon oxidation at 1650°C. Transmission electron microscopy enabled to disclose microstructural features occurred during oxidation never observed before. In the pristine material, (Zr,W)B2 solid solutions surround the original ZrB2 nuclei, whereas refractory W‐compounds at triple junctions and clean grain boundaries are distinctive of this ceramic. After oxidation, the microstructure is typified by intragranular nanostructures, in which nanosized W inclusions remained trapped within ZrO2 grains, or decorate their surfaces. The understanding of the oxidation reactions occurring in the system as a function of the oxygen partial pressure was fundamental to conclude that W‐based compounds do not notably suppress or retard the oxidation of ZrB2 ceramics.  相似文献   

9.
Bismuth‐doped glasses and crystals have been widely investigated due to their intriguing potential applications in superbroadband fiber amplifier and lasers in new NIR spectral range. However, few reports have been devoted so far to bismuth‐doped transparent glass‐ceramics. Here, this work reports on bismuth‐doped silicate glasses and glass‐ceramics, which were prepared by melt‐quenching and consequent annealing processes, respectively. On the basis of the analyses on crystallization kinetics, nucleation and growth rate of crystalline phase can be modulated and Sr2YbF7 nanophase can, therefore, be precipitated uniformly inside the glass matrix in a controlled way to maintain proper transparence especially in optical telecommunication windows. Once the nanophase comes into being, enhanced bismuth NIR luminescence can be observed by more than 40 times upon excitation of 470 nm. Similar enhancement can appear upon different excitation schemes and the mechanism is discussed accordingly. Such Bi doped transparent glass‐ceramics with improved luminescence efficiency might find application in fiber lasers for future optical fiber communication.  相似文献   

10.
The kinetics of redox reactions of iron oxide in oxygen carrier 50Fe2O3/MgAl2O4 are examined using different time‐resolved techniques. Reduction kinetics are studied by H2 temperature‐programmed reduction (H2‐TPR) monitored by time‐resolved in situ XRD. In contrast to conventional TPR, in situ XRD distinguishes the three‐stage reduction of Fe2O3 → Fe3O4 → FeO → Fe. It also shows that the oxidation of Fe → Fe3O4 by CO2 has no intermediate crystalline phases, explaining why its kinetics can easily be investigated by conventional CO2 temperature‐programmed oxidation (CO2‐TPO). A shrinking core model which takes into account solid state diffusion allows describing the experimental data.  相似文献   

11.
Hi‐Nicalon?‐S SiC fiber strengths and Weibull moduli were measured after oxidation for up to 100 hours between 700°C and 1400°C in wet and dry air. SiO2 scale thickness and crystallization extent were measured by TEM. The effect of furnace environment on trace element levels in the SiO2 scales was characterized by secondary ion mass spectroscopy. Crystallization kinetics and Deal‐Grove oxidation kinetics for glass and crystalline scale, and the transition between them, were modeled and determined. Crystallization retards oxidation kinetics, and scale that formed in the crystalline state was heavily deformed by the growth stress accompanying SiC oxidation volume expansion. Glass scales formed in dry air slightly increased fiber strength. Glass scales formed in wet air did not increase strength, and in some cases significantly decreased strength. Scales more than 200 nm thick were usually partially or completely crystallized, which degraded fiber strength. Contamination of scales by trace impurities such as Al and Ca during heat treatment inhibited crystallization. The oxidation kinetics and the strengths of oxidized Hi‐Nicalon?‐S fibers are compared with previous studies on SiC fibers, bulk SiC, and single‐crystal SiC. Empirical relationships between oxidation temperature, time, scale thickness, and strength are determined and discussed.  相似文献   

12.
Compatibility of Bi‐based piezoelectric ceramic and copper electrodes is demonstrated by co‐firing 0.88Bi1/2Na1/2TiO3–0.08Bi1/2K1/2TiO3–0.04BaTiO3 (BNKBT88) with copper. A combination of Bi2O3, CuO, ZnO, Li2CO3, and B2O3 are used as additives to reduce firing temperature to 900°C with minimal effect on the electromechanical properties compared to sintering at 1150°C without additives. Co‐firing with copper electrodes requires controlled oxygen sintering at low temperature. The atmosphere is controlled using carbon dioxide and hydrogen gas to maintain an oxygen partial pressure of 6.1 × 10?8 atm, which is necessary for the coexistence of Cu metal and Bi2O3. The thermodynamic activity of bismuth oxide in BNKBT88 is calculated to be 0.38. BNKBT88 ceramics were successfully co‐fired with internal as well as surface Cu metal electrodes. The copper co‐fired ceramics were successfully polarized and the dielectric and piezoelectric properties are evaluated.  相似文献   

13.
This paper reports a new strainless fabrication method for ytterbium‐doped CaF2 laser ceramics involving no drying step before green body casting. The nanoparticles were kept in aqueous solution until green body shaping. Centrifugation was used to obtain correct compactness of the green body before sintering. Characterizations were conducted at different steps of the fabrication process. No grain boundaries oxidation was observed in the sintered ceramics although the nanoparticles were permanently maintained in water until they were sintered. Finally, these ceramics are more homogeneous and have less light scattering defects (no porosity), and present improved optical properties when compared to ceramics obtained from dried nanopowders.  相似文献   

14.
Usually, resonating cantilevers come from silicon technology and are activated with pure bending mode. In this work, we suggest to combine high‐sensitive cantilever structure with both self‐actuated and self‐read‐out piezoelectric thick‐film for high electrical–mechanical coupling. This cantilever is realized through screen‐printing deposition associated with a sacrificial layer. It is composed of a PZT layer between two gold electrodes. Optimum performances of piezoelectric ceramics generally imply the use of mechanical pressure and very high sintering temperature that are not compatible with the screen‐printing process. Addition of eutectic composition Li2CO3‐Bi2O3‐CuO or borosilicate glass‐frit to PZT powder and application of isostatic pressure improve the sintering at a given temperature. Firing temperature of 850°C, 900°C, and 950°C is tested. Microstructural, electrical and mechanical characterizations are achieved. In addition to the bending mode, the in‐plane 31‐longitudinal vibration mode and the out‐of‐plane 33‐thickness resonance mode are revealed. Correlations between experimental results and modeling of the different vibration modes are established. The piezoelectric parameters of PZT cantilevers approach those of ceramics. Quality factors between 300 and 400 associated with the unusual 31‐longitudinal mode make screen‐printed PZT cantilevers good candidates for detection in liquid and gaseous media.  相似文献   

15.
The aging kinetics during low‐temperature aging of calcia‐stabilized tetragonal zirconia polycrystal (Ca‐TZP) ceramics prepared by high‐energy milling of natural zirconia mineral (baddeleyite) was studied by X‐ray diffraction under hydrothermal treatment conditions. Aging kinetics was investigated for ceramics with different contents of calcia. It was found that the kinetics may be well‐described within Johnson‐Mehl‐Avrami‐Kolmogorov model. Model parameters were determined by data fitting procedure. Change in exponential factor within Johnson‐Mehl‐Avrami‐Kolmogorov model with time is shown. Analytical model to describe aging kinetics is proposed. The transformation nucleation rate, initial diameter, and depth of the transformed areas and their growth rates are estimated. Degradation of hardness and fracture toughness is also reported for Ca‐TZP after low‐temperature aging for different contents of the stabilizer.  相似文献   

16.
The oxidation of p‐hydroxybenzoic acid in aqueous solution by UV radiation and by photo‐assisted ozonation (UV+O3) has been studied. The effects of temperature (10, 20, 30 and 40 °C), pH (2, 5, 7 and 9) and ozone partial pressure (0.10–0.38 kPa) on the conversion of p‐hydroxybenzoic acid were established. Experimental results indicated that the kinetics for both oxidation processes fit pseudo‐first‐order kinetics well. In the combined process, the overall kinetic rate constant was split into two components: direct oxidation by UV radiation (photolysis) and oxidation by free radicals (mainly OH·) generated in the system. The importance of these two reaction paths for each specific value of ozone partial pressure, temperature and pH was quantified. Lastly, a general expression is proposed for the reaction rate which takes into account the two reaction pathways and is a function of known operating variables. © 2001 Society of Chemical Industry  相似文献   

17.
Oxidation behavior of HfSiCNO ceramics for Hf/Si ratio of 0.09 at 1400°C–1600°C in ambient air is reported. Quantitative X‐ray analysis of oxidized powders shows crystalli‐zation of the amorphous phase into tetragonal hafnia, hafnon, and cristobalite (carbides, seen in inert atmosphere heat treatments are absent). Cross‐sectional SEM shows the oxide overgrowth on the particles to contain precipitates of hafnia/hafnon, while the interior of the particles is decorated with nanoscale grains of hafnia in a necklace‐like formation. The oxidation kinetics of these materials, determined both from weight‐change measurements and from direct observation of oxide overgrowth, are shown to be comparable to the oxidation of SiC single crystals. Oxidation of SiC–SiC minicomposites (straight fiber bundles infiltrated with a SiC matrix), coated with thin films of HfSiCNO prepared by dip‐coating was studied. The overgrowth thicknesses for oxidation time of 1000 h at 1600°C are compared for uncoated, SiCN(O)‐coated, and HfSiCNO‐coated minicomposites.  相似文献   

18.
Free radical graft polymerization has been used as a modification method to incorporate functional groups into polyolefins using a melt‐mixing process. The presence of oxygen simultaneously brings about auto‐oxidation during the polymerization. Although functional groups such as ketones are easily incorporated into polyolefin chains by auto‐oxidation, the method is rarely employed because of the difficulty of handling. In the study reported here, a novel modification of polybut‐1‐ene (PB) was performed using auto‐oxidation controlled by the addition of limonene monomer. The modified PB samples were prepared using 2,2′‐azobis(2‐methylpropionitrile), benzyl peroxide, tert‐butyl peroxide (TBPO) and Nd2O3/dicumyl peroxide (DCP) radical initiators in air. It was found that excessive auto‐oxidation was suppressed by the presence of the limonene, and that the greatest numbers of grafted groups were contained in the modified PB samples prepared using TBPO and Nd2O3/DCP. The samples obtained showed slower crystallization behavior and slower crystal–crystal transformation rates, respectively. In addition, the modified PB sample prepared using Nd2O3/DCP showed less ductile behavior than that prepared using TBPO because of a much slower transformation rate. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
Laser shock processing (LSP) is a new surface engineering approach to introduce significant compressive residual stress into ceramics to improve their mechanical properties. However, LSP of ceramics may induce microcracks, which limit the further improvement of mechanical properties of ceramics. In this research, the effect of a post‐LSP annealing process on α‐Al2O3 ceramics was investigated. The annealing treatment can cause thermal relaxation of compressive residual stress generated by LSP while still maintain the positive attribute of LSP. The compressive residual stress was stabilized after annealing after 10 hours at 1100‐1300°C. The healing of microcracks in α‐Al2O3 ceramics was observed during the post‐LSP annealing process, which is caused by diffusion bonding mechanisms and accompanied by dislocation and void formation. The combination of the stabilized compressive residual stress and microcrack healing can improve the cracking resistance of α‐Al2O3 ceramics to mechanical impact on the surface by 69%.  相似文献   

20.
Oxidation of p‐hydroxybenzoic acid in aqueous solution by the photo‐assisted Fenton reaction (Fe2+ + H2O2 + UV) has been studied. The effects of ferrous ion concentration (0.05, 0.14 and 0.29 mmol dm?3), temperature (10, 20, 30 and 40 °C), and initial hydrogen peroxide concentration (0.7, 1.4, 2.2 and 2.9 mmol dm?3) on the p‐hydroxybenzoic acid conversion were established. Experimental results indicate that the kinetics of this oxidation process fits pseudo‐first‐order kinetics well. The overall kinetic rate constant was split into two components: direct oxidation by UV radiation (photolysis) and oxidation by free radicals (mainly OH·) generated in the system. The importance of these two reaction paths for each specific value of ferrous ion concentration, temperature and initial hydrogen peroxide concentration was evaluated. A semi‐empirical expression is proposed for the overall reaction rate which takes into account both oxidation pathways and is a function of operating variables. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号