首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to farming environment in early life has been associated with lower risk for allergic diseases possibly caused by increased exposure to endotoxin. The aims of this study were to compare the reproducibility of different sampling methods for endotoxin, and to determine whether environmental characteristics have different effect on endotoxin levels of different sample types. The reproducibility of sampling methods (bed dust, floor dust, vacuum cleaner dust bag dust, settled dust and air samples) was studied with repeated sampling (five visits during 1 year) in five farming and five urban homes. To examine determinants of endotoxin for different types of dust sample, sampling was conducted once in 12 farming and 17 urban homes. Endotoxin was analyzed using Limulus Amebocyte Lysate assay. Bed dust samples had the best reproducibility (intraclass correlation, ICC=66%), but the difference between farming and non-farming homes was not clear with this sample type. The reproducibility of floor (ICC=52%) and settled dust (ICC=51%) was moderate. With these sample types the difference between farming and non-farming homes was clear. Settled dust had some seasonal variation. Based on this study, the best compromise for sampling for endotoxin appears to be floor dust sample followed by bed and settled dust samples. Practical Implications Endotoxins have been widely measured, even though the validity of different sample types to reflect the endotoxin exposure level of an indoor environment is poorly known. This study shows that bed dust samples have the best reproducibility, but they do not reflect the differences in exposure due to environmental factors such as farming. Floor dust samples with moderate reproducibility may be the best choice for sampling of endotoxin in large field studies.  相似文献   

2.
The objectives of this study were (i) to assess the determinants that affect concentrations of the bacterial cell wall components 3‐hydroxy fatty acids (3‐OH FAs) and muramic acid and of total viable bacteria and actinomycetes in house dust; and (ii) to examine the seasonal variation and reproducibility of these bacterial cell wall components in house dust. A number of lifestyle and environmental factors, mostly not consistent for different bacterial measures but commonly including the type of dwelling and farming (number of livestock), explained up to 37% of the variation of the bacterial concentrations in 212 homes in Eastern Finland. The reproducibility of 3‐OH FAs and muramic acid measurements in house dust were studied in five urban homes and were found to be generally high (ICC 74–84%). Temporal variation observed in repeated sampling of the same home throughout a year was more pronounced for 3‐OH FAs determinations (ICC 22%) than for muramic acid (ICC 55–66%). We conclude that determinants vary largely for different types of bacterial measurements in house dust; the measured parameters represent different aspects of the bacterial content indoors. More than one sample is needed to describe bacterial concentrations in house dust in the home environment due to large temporal variation.  相似文献   

3.
This study was designed to produce information about microbial concentrations using qPCR and their variation in different seasons and home environments with analyses of two types of house dust samples. Also the correlations between the two types of samples and the reproducibility of the parallel subsamples were studied. Two types of vacuumed house dust samples, rug dust and vacuum cleaner bag dust, were collected in 5 normal urban homes in four different seasons (N = 20 + 20). From all dust samples, five parallel subsamples were subjected to qPCR analyses of 17 microbial species or assay groups of microbes. The highest fungal concentrations were found for the Penicillium/Aspergillus/Paecilomyces variotii group, and for the species Aspergillus penicillioides, Aureobasidium pullulans, Cladosporium cladosporioides and Cladosporium herbarum. These species/groups were present in almost all samples. The two types of dust samples gave similar results for most microbial species or groups analyzed, but in general, concentrations were slightly higher in rug dust than in dust from vacuum cleaner bag. Microbial concentrations varied significantly between different seasons and hence the similarity of samples within home was mainly low. The concentrations varied significantly also between different home environments. The reproducibility of the parallel subsamples was good or moderate for most of the analyzed species or assay groups. However, further studies are needed to fully understand the factors causing variation in these methods. Nevertheless, in order to show actual differences in fungal concentrations between urban homes with no known microbial sources, all dust samples to be compared should be taken during the same season.  相似文献   

4.
The determinants of the temporal variability of indoor dust concentrations of semivolatile organic compounds (SVOCs) remain mostly unexplored. We examined temporal variability of dust concentrations and factors affecting dust concentrations for a wide range of SVOCs. We collected dust samples three times from 29 California homes during a period of 22 months and quantified concentrations of 47 SVOCs in 87 dust samples. We computed intraclass correlation coefficients (ICCs) using three samples collected within the same house. We calculated correlation coefficients (r) between two seasons with similar climate (spring and fall) and between two seasons with opposite climate (summer and winter). Among 26 compounds that were detected in more than 50% of the samples at all three visits, 20 compounds had ICCs above 0.50 and 6 compounds had ICCs below 0.50. For 19 out of 26 compounds, correlation coefficients between spring and fall (r = 0.48-0.98) were higher than those between summer and winter (r = 0.09-0.92), implying seasonal effects on dust concentrations. Our study showed that within-home temporal variability of dust concentrations was small (ICC > 0.50) for most SVOCs, but dust concentrations may vary over time for some SVOCs with seasonal variations in source rates, such as product use.  相似文献   

5.
Analysis of the dust from heating, ventilation, and air conditioning (HVAC) filters is a promising long‐term sampling method to characterize airborne particle‐bound contaminants. This filter forensics (FF) approach provides valuable insights about differences between buildings, but does not allow for an estimation of indoor concentrations. In this investigation, FF is extended to quantitative filter forensics (QFF) by using measurements of the volume of air that passes through the filter and the filter efficiency, to assess the integrated average airborne concentrations of total fungal and bacterial DNA, 36 fungal species, endotoxins, phthalates, and organophosphate esters (OPEs) based on dust extracted from HVAC filters. Filters were collected from 59 homes located in central Texas, USA, after 1 month of deployment in each summer and winter. Results showed considerable differences in the concentrations of airborne particle‐bound contaminants in studied homes. The airborne concentrations for most of the analytes are comparable with those reported in the literature. In this sample of homes, the HVAC characterization measurements varied much less between homes than the variation in the filter dust concentration of each analyte, suggesting that even in the absence of HVAC data, FF can provide insight about concentration differences for homes with similar HVAC systems.  相似文献   

6.
Qualitative reporting of home indoor moisture problems predicts respiratory diseases. However, causal agents underlying such qualitative markers remain unknown. In the homes of 198 multiple allergic case children and 202 controls in Sweden, we cultivated culturable fungi by directly plating dust, and quantified (1‐3, 1‐6)‐β‐d ‐glucan and ergosterol in dust samples from the child's bedroom. We examined the relationship between these fungal agents and degree of parent or inspector‐reported home indoor dampness, and microbiological laboratory's mold index. We also compared the concentrations of these agents between multiple allergic cases and healthy controls, as well as IgE‐sensitization among cases. The concentrations of culturable fungal agents were comparable between houses with parent and inspector‐reported mold issues and those without. There were no differences in concentrations of the individual or the total summed culturable fungi, (1‐3, 1‐6)‐β‐d ‐glucan, and ergosterol between the controls and the multiple allergic case children, or individual diagnosis of asthma, rhinitis, or eczema. Culturable fungi, (1‐3, 1‐6)‐β‐d ‐glucan, and ergosterol in dust were not associated with qualitative markers of indoor dampness or mold or indoor humidity. Furthermore, these agents in dust samples were not associated with any health outcomes in the children.  相似文献   

7.
The comparison of endotoxin levels between study populations and countries is limited as a result of differences in sampling, extraction, and storage procedures. The objective of this study is to assess the levels and determinants of endotoxin in mattress and living room floor dust samples from three European countries, namely, Germany, the Netherlands, and Sweden, using a standardized sampling, storage, and analysis protocol. The mattress and living room floor dust was collected from the homes of 1065 German, Dutch, and Swedish (pre-)school children. All the samples were collected in the cool season and analyzed for endotoxin in a central laboratory. The determinants were assessed by a standardized questionnaire. The endotoxin concentrations in mattress and living room floor dust were found to be the highest in German homes and lowest in the Swedish ones. Differences between the geometric means were small (factor 1.1-1.7). Most of the associations between endotoxin concentrations and potential determinants were not statistically significant and heterogeneous across countries. However, keeping pets and having more than four persons living in the home were consistently associated with up to 1.7-fold higher endotoxin concentrations in mattress and floor dust. Furthermore, having carpets or rugs, and opening the windows frequently was associated with up to 3.4-fold and 1.3-fold higher endotoxin concentrations in living room floor dust, respectively. The proportion of variance explained by the questionnaire variables was generally low. In conclusion, the data on housing characteristics did not accurately predict the endotoxin concentrations in house dust, and could only partly explain the differences between countries. PRACTICAL IMPLICATIONS: The differences between the endotoxin concentrations in German, Dutch, and Swedish homes are small. House dust endotoxin concentrations are associated with a number of housing factors, such as pet-ownership, floor cover, number of persons living in the home, and ventilation. The variability of the endotoxin levels between homes and countries can only be partly explained by these factors.  相似文献   

8.
Indoor bioaerosols, such as mold spores, have been associated with respiratory symptoms in patients with asthma; however, dose–response relationships and guidelines on acceptable levels are lacking. Furthermore, a causal link between mold exposure and respiratory infections or asthma remains to be established. The aim of this study was to determine indoor concentrations of Aspergillus fumigatus and a subset of clinically relevant fungi in homes of people with asthma, in relation to markers of airways colonization and sensitization. Air and dust samples were collected from the living room of 58 properties. Fungal concentrations were quantified using mold‐specific quantitative PCR and compared with traditional microscopic analysis of air samples. Isolation of A. fumigatus from sputum was associated with higher airborne concentrations of the fungus in patient homes (P = 0.04), and a similar trend was shown with Aspergillus/Penicillium‐type concentrations analyzed by microscopy (P = 0.058). No association was found between airborne levels of A. fumigatus and sensitization to this fungus, or dustborne levels of A. fumigatus and either isolation from sputum or sensitization. The results of this study suggest that the home environment should be considered as a potential source of fungal exposure, and elevated home levels may predispose people with asthma to airways colonization.  相似文献   

9.
This study examined: (i) biocontaminant levels in flooded homes of New Orleans two years after the flooding; (ii) seasonal changes in biocontaminant levels, and (iii) correlations between biocontaminant levels obtained by different environmental monitoring methods. Endotoxin, (1 → 3)-β-d-glucan, fungal spores, and dust mite allergens were measured in 35 homes during summer and winter. A combination of dust sampling, aerosolization-based microbial source assessment, and long-term inhalable bioaerosol sampling aided in understanding exposure matrices. On average, endotoxin found in the aerosolized fraction accounted for < 2% of that measured in the floor dust, suggesting that vacuuming could overestimate inhalation exposures. In contrast, the (1 → 3)-β-d-glucan levels in the floor dust and aerosolized fractions were mostly comparable, and 25% of the homes showed aerosolizable levels even higher than the dust-borne levels. The seasonal patterns for endotoxin in dust and the aerosolizable fraction were different from those found for (1 → 3)-β-d-glucan, reflecting the temperature and humidity effects on bacterial and fungal contamination. While the concentration of airborne endotoxin followed the same seasonal trend as endotoxin aerosolized from surfaces, no significant seasonal difference was identified for the concentrations of airborne (1 → 3)-β-d-glucan and fungal spores. This was attributed to the difference in the particle size; smaller endotoxin-containing particles can remain airborne for longer time than larger fungal spores or (1 → 3)-β-d-glucan-containing particles. It is also possible that fungal aerosolization in home environments did not reach its full potential. Detectable dust mite allergens were found only in dust samples, and more commonly in occupied homes. Levels of endotoxin, (1 → 3)-β-d-glucan, and fungi in air had decreased during the two-year period following the flooding as compared to immediate measurements; however, the dust-borne endotoxin and (1 → 3)-β-d-glucan levels remained elevated. No conclusive correlations were found between the three environmental monitoring methods. The findings support the use of multiple methods when assessing exposure to microbial contaminants.  相似文献   

10.
Household dust from 19 Swedish homes was collected using two different sampling methods: from the occupant's own home vacuum cleaner after insertion of a new bag and using a researcher-collected method where settled house dust was collected from surfaces above floor level. The samples were analyzed for 16 polybrominated diphenyl ether (PBDE) congeners and total hexabromocyclododecane (HBCD). Significant correlations (r = 0.60-0.65, Spearman r = 0.47-0.54, P < 0.05) were found between matched dust samples collected with the two sampling methods for ∑OctaBDE and ∑DecaBDE but not for ∑PentaBDE or HBCD. Statistically significantly higher concentrations of all PBDE congeners were found in the researcher-collected dust than in the home vacuum cleaner bag dust (VCBD). For HBCD, however, the concentrations were significantly higher in the home VCBD samples. Analysis of the bags themselves indicated no or very low levels of PBDEs and HBCD. This indicates that there may be specific HBCD sources to the floor and/or that it may be present in the vacuum cleaners themselves. The BDE-47 concentrations in matched pairs of VCBD and breast milk samples were significantly correlated (r = 0.514, P = 0.029), indicating that one possible exposure route for this congener may be via dust ingestion. PRACTICAL IMPLICATIONS: The statistically significant correlations found for several individual polybrominated diphenyl ether (PBDE) congeners, ∑OctaBDE and ∑DecaBDE between the two dust sampling methods in this study indicate that the same indoor sources contaminate both types of dust or that common processes govern the distribution of these compounds in the indoor environment. Therefore, either method is adequate for screening ∑OctaBDE and ∑DecaBDE in dust. The high variability seen between dust samples confirms results seen in other studies. For hexabromocyclododecane (HBCD), divergent results in the two dust types indicate differences in contamination sources to the floor than to above-floor surfaces. Thus, it is still unclear which dust sampling method is most relevant for HBCD as well as for ∑PentaBDE in dust and, further, which is most relevant for determining human exposure to PBDEs and HBCD.  相似文献   

11.
Fungal exposure inside homes has been associated with adverse respiratory symptoms in children and adults. While fungal assessment has traditionally relied upon questionnaires, fungal growth on culture plates and spore counts, new immunoassays for extracellular polysaccharides (EPS) and beta (1-->3)-glucans have enabled quantitation of fungal agents in house dust in a more timely and cost-effective manner, possibly providing a better measure of fungal exposure. We investigated associations among measurements of EPS, beta (1-->3)-glucans and culturable fungi obtained from 23 Dutch homes. From each home, dust samples were vacuumed from the living room floor twice during the Fall, Winter and Spring seasons for a total of six collections (every 6 weeks from October 1997 to May 1998). Samples were sieved and fine dust was analyzed for EPS from Aspergillus and Penicillium spp. combined, beta (1-->3)-glucans and culturable fungi. EPS was positively associated with glucan; an increase from the 25th to the 75th percentile of glucan concentration was associated with a 1.6-fold increase in EPS concentration (95% CI = 1.3 to 2.0; p < 0.01). The most significant variables associated with EPS and glucan concentrations were the surface type that was vacuumed and the concentration of total culturable fungi (in colony forming units (CFU)/g dust), with an increase in CFU/g from the 25th to the 75th percentile associated with a 1.3 (1.1-1.6)-fold increase in glucan and a 1.7 (1.3-2.2)-fold increase in EPS concentrations. In addition, the within-home variation of EPS levels were smaller than those between homes (25,646 U/g vs. 50,635 U/g), whereas the variation of glucan levels was similar within and between homes (1,300 vs. 1,205 micrograms/g). These positive associations suggest that house dust concentrations of beta (1-->3)-glucan, and particularly those of EPS, are good markers for the overall levels of fungal concentrations in floor dust which is a surrogate for estimating airborne fungal exposure.  相似文献   

12.
Recent work suggests that evaporative coolers increase the level and diversity of bioaerosols, but this association remains understudied in low‐income homes. We conducted a cross‐sectional study of metropolitan, low‐income homes in Utah with evaporative coolers (n = 20) and central air conditioners (n = 28). Dust samples (N = 147) were collected from four locations in each home and analyzed for dust‐mite allergens Der p1 and Der f1, endotoxins, and β‐(1 → 3)‐d ‐glucans. In all sample locations combined, Der p1 or Der f1 was significantly higher in evaporative cooler versus central air conditioning homes (OR = 2.29, 95% CI = 1.05‐4.98). Endotoxin concentration was significantly higher in evaporative cooler versus central air conditioning homes in furniture (geometric mean (GM) = 8.05 vs 2.85 EU/mg, P < .01) and all samples combined (GM = 3.60 vs 1.29 EU/mg, P = .03). β‐(1 → 3)‐d ‐glucan concentration and surface loads were significantly higher in evaporative cooler versus central air conditioning homes in all four sample locations and all samples combined (P < .01). Our study suggests that low‐income, evaporative cooled homes have higher levels of immunologically important bioaerosols than central air‐conditioned homes in dry climates, warranting studies on health implications and other exposed populations.  相似文献   

13.
Respiratory illnesses have been linked to children's exposures to water‐damaged homes. Therefore, understanding the microbiome in water‐damaged homes is critical to preventing these illnesses. Few studies have quantified bacterial contamination, especially specific species, in water‐damaged homes. We collected air and dust samples in twenty‐one low‐mold homes and twenty‐one high‐mold homes. The concentrations of three bacteria/genera, Stenotrophomonas maltophilia, Streptomyces sp., and Mycobacterium sp., were measured in air and dust samples using quantitative PCR (QPCR). The concentrations of the bacteria measured in the air samples were not associated with any specific home characteristic based on multiple regression models. However, higher concentrations of S. maltophilia in the dust samples were associated with water damage, that is, with higher floor surface moisture and higher concentrations of moisture‐related mold species. The concentrations of Streptomyces and Mycobacterium sp. had similar patterns and may be partially determined by human and animal occupants and outdoor sources of these bacteria.  相似文献   

14.
Research has largely reported that dog exposure is associated with reduced allergic disease risk. Responsible mechanism(s) are not understood. The goal was to investigate whether introducing a dog into the home changes the home dust microbiota. Families without dogs or cats planning to adopt a dog and those who were not were recruited. Dust samples were collected from the homes at recruitment and 12 months later. Microbiota composition and taxa (V4 region of the 16S rRNA gene) were compared between homes that did and did not adopt a dog. A total of 91 dust samples from 54 families (27 each, dog and no dog; 17 dog and 20 no dog homes with paired samples) were analyzed. A significant dog effect was seen across time in both unweighted UniFrac and Canberra metrics (both P = .008), indicating dog introduction may result in rapid establishment of rarer and phylogenetically related taxa. A significant dog‐time interaction was seen in both weighted UniFrac (P < .001) and Bray‐Curtis (P = .002) metrics, suggesting that while there may not initially be large relative abundance shifts following dog introduction, differences can be seen within a year. Therefore, dog introduction into the home has both immediate effects and effects that emerge over time.  相似文献   

15.
Abstract In the present study, we modified an existing surface wipe sampling method for lead and other heavy metals to create a protocol to collect fungi in floor dust followed by real‐time quantitative PCR (qPCR)‐based detection. We desired minimal inconvenience for participants in residential indoor environmental quality and health studies. Accuracy, precision, and method detection limits (MDLs) were investigated. Overall, MDLs ranged from 0.6 to 25 cell/cm2 on sampled floors. Overall measurement precisions expressed as the coefficient of variation because of sample processing and qPCR ranged 6–63%. Median and maximum fungal concentrations in house dust in study homes in Visalia, Tulare County, California, were 110 and 2500 cell/cm2, respectively, with universal fungal primers (allergenic and nonallergenic species). The field study indicated samplings in multiple seasons were necessary to characterize representative whole‐year fungal concentrations in residential microenvironments. This was because significant temporal variations were observed within study homes. Combined field and laboratory results suggested this modified new wipe sampling method, in conjunction with growth‐independent qPCR, shows potential to improve human exposure and health studies for fungal pathogens and allergens in dust in homes of susceptible, vulnerable population subgroups.

Practical Implications

Fungi are ubiquitous in indoor and outdoor environments, and many fungi are known to cause allergic reactions and exacerbate asthma attacks. This study established—by modifying an existing—a wipe sampling method to collect fungi in floor dust followed by real‐time quantitative PCR (qPCR)‐based detection methodologies. Results from this combined laboratory and field assessment suggested the methodology’s potential to inform larger human exposure studies for fungal pathogens and allergens in house dust as well as epidemiologic studies of children with asthma and older adults with chronic respiratory diseases.
  相似文献   

16.
We analyzed organophosphate flame retardants (OPFRs) in 74 indoor dust samples collected from seven microenvironments (building material markets, private cars, daycare centers, private homes, floor/carpet stores, offices, and schools) in the Rhine/Main region of Germany. Ten of 11 target OPFRs were ubiquitously detected, some with more than 97% detection frequency, including tris(1,3‐dichloroisopropyl)phosphate (TCIPP), tris(2‐butoxyethyl)phosphate (TBOEP), triphenyl phosphate (TPHP), and tris(isobutyl) phosphate (TIBP). Total concentrations (∑OPFRs) ranged from 5.9 to 4800 μg/g, with TBOEP and TCIPP being the most abundant congeners. The ∑OPFRs in schools, private cars, offices, and daycare centers were significantly (P<.05) higher than in private homes. The ∑OPFRs for building material markets (19 μg/g) and floor/carpet stores (20 μg/g) showed no significant difference to the other microenvironments, likely because of forced ventilation. The profiles of OPFRs in dust samples from offices and private homes were highly similar, while profiles from the other five microenvironments were substantially different. Comparison of our results with previous studies indicates a significant global variation in OPFR concentrations and their profiles, reflecting distinct fire safety regulations in different countries and/or different sampling strategies. Dust ingestion constitutes the major exposure pathway to OPFRs for toddlers, while air inhalation is the major pathway for adults.  相似文献   

17.
Resuspension of microbes in floor dust and subsequent inhalation by human occupants is an important source of human microbial exposure. Microbes in carpet dust grow at elevated levels of relative humidity, but rates of this growth are not well established, especially under changing conditions. The goal of this study was to model fungal growth in carpet dust based on indoor diurnal variations in relative humidity utilizing the time-of-wetness framework. A chamber study was conducted on carpet and dust collected from 19 homes in Ohio, USA and exposed to varying moisture conditions of 50%, 85%, and 100% relative humidity. Fungal growth followed the two activation regime model, while bacterial growth could not be evaluated using the framework. Collection site was a stronger driver of species composition (P = 0.001, R2 = 0.461) than moisture conditions (P = 0.001, R2 = 0.021). Maximum moisture condition was associated with species composition within some individual sites (P = 0.001-0.02, R2 = 0.1-0.33). Aspergillus, Penicillium, and Wallemia were common fungal genera found among samples at elevated moisture conditions. These findings can inform future studies of associations between dampness/mold in homes and health outcomes and allow for prediction of microbial growth in the indoor environment.  相似文献   

18.
Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in indoor dust of three microenvironments in Durban, South Africa. The sum of eight PBDEs and three PCBs were quantified by gas chromatography with mass spectral detection. The mean concentrations of ∑n = 8 PBDEs and ∑n = 3 PCBs in 10 homes, 11 offices, and 13 university students’ computer laboratories were 1710, 1520, and 818 ng/g, and 891, 923, and 1880 ng/g for PBDEs and PCBs, respectively. The concentration of PCBs found in homes was independent (= 0.0625) of building construction year. Similarly, no relationship was observed between PCB concentrations and floor type. The concentrations of PBDEs correlated (r = 0.60) with PCB concentrations in homes, thus assuming similar sources. The elevated concentrations of PBDEs and PCBs may have significant implications for human exposure.  相似文献   

19.
Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next‐generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non‐random and demonstrated species segregation (C‐score, < 0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (< 0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics.  相似文献   

20.
This study assessed the collection efficiency (CE) of two popularly used sampling devices (BioSampler and Coriolis sampler) for fungal aerosols. Phosphate‐buffered saline (PBS) supplemented with or without surfactant (Tween‐20, Tween‐80, or Triton X‐100) and antifoam agent was prepared and used as collection liquids. The agar impactor (BioStage) was simultaneously operated with liquid‐based samplers to collect fungi from seven sites located at a university building, public library, and animal farming. Fungal concentrations determined by liquid samplers were divided by those by BioStage, and the ratio values represented CE. Results indicate that the CE of BioSampler was superior to that of Coriolis (P = 0.0001) and the PBS containing surfactant collected fungi better than that without surfactant (P < 0.0001), whereas antifoam agent showed no influence (P = 0.8). Moreover, fungal concentrations determined by BioSampler with surfactant‐added PBS were statistically indifferent from those by BioStage (P > 0.05) with a Spearman correlation coefficient of 0.81‐0.83 (P < 0.01). In addition to sampler and collection liquid, sampling location was also identified as a significant CE factor (P = 0.006), implying potential influences by fungal genera in the studied fields. Overall, BioSampler with surfactant‐supplemented PBS (eg, Triton X‐100) is recommended considering the great CE and compatibility with a variety of analytical assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号