首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents analytical and experimental investigations for fatigue lives of structures under uniaxial, torsional, multiaxial proportional, and non‐proportional loading conditions. It is known that the rotation of principal stress/strain axes and material additional hardening due to non‐proportionality of cycle loading are the 2 main causes resulting in shorter fatigue lives compared with those under proportional loading. This paper treats these 2 causes as independent factors influencing multiaxial fatigue damage and proposes a new non‐proportional influencing parameter to consider their combined effects on the fatigue lives of structures. A critical plane model for multiaxial fatigue lives prediction is also proposed by using the proposed non‐proportional influencing factor to modify the Fatemi‐Socie model. The comparison between experiment results and theoretical evaluation shows that the proposed model can effectively predict the fatigue life due to multiaxial non‐proportional loading.  相似文献   

2.
Two natural rubber (NR) compounds of hardness shore A 60 and 70 with 10 different biaxial displacement/twist paths were investigated using an axisymmetric cylindrical hollow dumbbell specimen. The effects of the proportional and non‐proportional loading modes on the fatigue life are discussed. In total, 52 fatigue test results are reported with fatigue life results of 3,918 to 488,000 cycles. The effect of the channel phase on the fatigue life is discussed.  相似文献   

3.
In order to study the use of a local approach to predict crack‐initiation life on notches in mechanical components under multiaxial fatigue conditions, the study of the local cyclic elasto‐plastic behaviour and the selection of an appropriate multiaxial fatigue model are essential steps in fatigue‐life prediction. The evolution of stress–strain fields from the initial state to the stabilized state depends on the material type, loading amplitude and loading paths. A series of biaxial tension–compression tests with static or cyclic torsion were carried out on a biaxial servo‐hydraulic testing machine. Specimens were made of an alloy steel 42CrMo4 quenched and tempered. The shear stress relaxations of the cyclic tension–compression with a steady torsion angle were observed for various loading levels. Finite element analyses were used to simulate the cyclic behaviour and good agreement was found. Based on the local stabilized cyclic elastic–plastic stress–strain responses, the strain‐based multiaxial fatigue damage parameters were applied and correlated with the experimentally obtained lives. As a comparison, a stress‐invariant‐based approach with the minimum circumscribed ellipse (MCE) approach for evaluating the effective shear stress amplitude was also applied for fatigue life prediction. The comparison showed that both the equivalent strain range and the stress‐invariant parameter with non‐proportional factors correlated well with the experimental results obtained in this study.  相似文献   

4.
To accurately perform the fatigue assessment of engineering components subjected to in‐service multiaxial fatigue loading, the adopted design criterion must properly be calibrated, the used information usually being the fatigue strength under both pure uniaxial and pure torsional fatigue loading. Because of the complex fatigue response of metallic materials to multiaxial loading paths, the only reliable way to generate the necessary pieces of calibration information is by running appropriate experiments. Unfortunately, because of a lack of both time and resources, very often, structural engineers are requested to perform the multiaxial fatigue assessment by guessing the necessary fatigue properties. In this complex scenario, initially, the available empirical rules suitable for estimating fatigue strength under both pure axial and pure torsional fatigue loading are reviewed in detail. Subsequently, several experimental results taken from the literature and generated by testing metallic materials under a variety of proportional and non‐proportional multiaxial loading paths are used to investigate the way such empirical rules affect the accuracy in estimating fatigue strength, the damage extent being evaluated according to the modified Wöhler curve method. Such a systematic validation exercise allowed us to prove that under proportional loading (with both zero and non‐zero mean stresses), an adequate margin of safety can be reached even when the necessary calibration information is directly estimated from the material ultimate tensile strength. On the contrary, in the presence of non‐proportional loading, the use of the empirical rules reviewed in the present paper can result, under particular circumstances, in a non‐conservative fatigue design.  相似文献   

5.
In this paper, the shortcomings of the Smith–Watson–Topper (SWT) damage parameter are analysed on the basis of the critical plane concept. It is found that the SWT model usually overestimates the fatigue lives of materials since it only takes into account the fatigue damage caused by the tensile components. To solve this problem, Chen et al. (CXH) modified the SWT model through considering the shear components. However, there are at least two problems present in CXH model: (1) the mean stress is not considered and (2) the different influence of the normal and shear components on fatigue life is not included. Besides, experimental validations show that the modification by Chen et al. usually leads to conservative fatigue life predictions during non‐proportional loading. In order to overcome the shortcomings of SWT and CXH models, a damage parameter as the effective strain energy density (ESED) is proposed. Experimental validations by using eight kinds of materials show that the ESED model can give satisfactory fatigue life predictions under the non‐proportional loading.  相似文献   

6.
Two methods based on local stress responses are proposed to locate fatigue critical point of metallic notched components under non‐proportional loading. The points on the notch edge maintain a state of uniaxial stress even when the far‐field fatigue loading is multiaxial. The point bearing the maximum stress amplitude is recognized as fatigue critical point under the condition of non‐mean stress; otherwise, the Goodman's empirical formula is adopted to amend mean stress effect prior to the determination of fatigue critical point. Furthermore, the uniaxial stress state can be treated as a special multiaxial stress state. The Susmel's fatigue damage parameter is employed to evaluate the fatigue damage of these points on the notch edge. Multiaxial fatigue tests on thin‐walled round tube notched specimens made of GH4169 nickel‐base alloy and 2297 aluminium‐lithium alloy are carried out to verify the two methods. The prediction results show that both the stress amplitude method and the Susmel's parameter method can accurately locate the fatigue critical point of metallic notched components under multiaxial fatigue loading.  相似文献   

7.
In this study the uniaxial/biaxial low‐cycle fatigue behaviour of three structural steels (Ck45 normalized steel, 42CrMo4 quenched and tempered steel and AISI 303 stainless steel) are studied, evaluated and compared. Two parameters are considered for estimating non‐proportional fatigue lives: the coefficient of additional hardening and the factor of non‐proportionality. A series of tests of uniaxial/biaxial low‐cycle fatigue composed of tension/compression with cyclic torsion were carried out on a biaxial servo‐hydraulic testing machine. Several loading paths were carried out, including proportional and non‐proportional ones, in order to verify the additional hardening caused by different loading paths. The experiments showed that the three materials studied have very different additional hardening behaviour. Generally, the transient process from the initial loading cycle to stabilized loading cycle occurs in a few cycles. The stabilized cyclic stress/strain parameters are controlling parameters for fatigue damage. A factor of non‐proportionality of the loading paths is evaluated based on the Minimum Circumscribed Ellipse approach. It is shown that the microstructure has a great influence on the additional hardening and the hardening effect is dependent on the loading path and also the intensity of the loading.  相似文献   

8.
This paper presents the results and evaluation of the multiaxial fatigue behaviour of laserbeam‐welded overlapped tubular joints made from the artificially hardened aluminium alloy AlSi1MgMn T6 (EN AW 6082 T6) under multiaxial loadings with constant and variable amplitudes. Several fatigue test series under pure axial and pure torsional loadings as well as combined axial and torsional proportional and non‐proportional loadings have been carried out in the range of 2·104 to 2·107 cycles. The assessment of the investigated thin‐walled joints is based on a local notch stress concept. In this concept the fatigue critical area of the weld root is substituted by a fictitious notch radius rref = 0.05 mm. The equivalent stresses in the notch, considering especially the fatigue life reducing influence of non‐proportional loading in comparison to proportional loading, were calculated by a recently developed hypothesis, which is called the Stress Space Curve Hypothesis (SSCH). This hypothesis is based on the time evolution of the stress state during one load cycle. In addition, the fatigue strength evaluation of multiaxial spectrum loading was carried out using a modified Gough‐Pollard algorithm.  相似文献   

9.
Fatigue life of magnesium laserbeam‐welds (AZ31 and AZ61 alloys) was assessed experimentally under variable amplitude loadings. The specimens were subjected to load‐controlled cyclic loadings. The tests were carried out using a Gauss‐distributed amplitude sequence of length L= 5 · 104 cycles and loading ratio R = –1 under pure axial, pure torsion as well as in‐phase and out‐of‐phase combined loadings. The notch stresses were obtained from a linear‐elastic FE‐model using the reference radius approach with rref  = 0.05 mm. The stress‐based hypotheses were applied: Effective equivalent stress hypothesis (EESH), shear stress intensity hypothesis (SIH), Findley, and modified Gough‐Pollard. A non‐proportionality factor is introduced and steps required for computing are presented in order to improve fatigue life assessment under non‐proportional loadings.  相似文献   

10.
A significant part of the fatigue life is spent during short crack growth. Therefore, modelling of short fatigue crack growth offers an opportunity to improve the accuracy of numerical life assessment. Besides stating some general remarks on the short crack approach itself and on multiaxial fatigue criteria, a short crack growth based fatigue life prediction approach for multiaxial non‐proportional loading is presented. This approach accounts for the geometrical size effect by considering the geometry correction functions for semi‐elliptical surface cracks in inhomogeneous gradient stress fields. The geometrical size effect is becoming significant for notch radii smaller than four times the defined technical crack size. Additionally, life influencing factors due to the statistical size effect have been taken into account. The comparison of calculated and experimentally observed fatigue lives of shouldered shafts made of S460N with notch radii of 0.2 to 4.0 mm under non‐proportional tension and torsion loading yields a satisfying accuracy.  相似文献   

11.
L. Dietrich  G. Socha 《Strain》2012,48(4):279-285
Abstract: Changes in the mechanical characteristics of the structural steel because of fatigue damage accumulation are investigated in this article. Cyclic loading was performed in a complex stress state. Tubular specimens were loaded by axial force and torque, with loading performed along proportional and non‐proportional paths in the strain space. Material characteristics in the form of the stress–strain curve and yield surface were determined in the ‘as received’ state and after cyclic loading. It was found that accumulation of the fatigue damage because of cyclic loading in a complex stress state along proportional and non‐proportional paths in the strain space is manifested by the increase in inelastic response. The rate of damage was found to be higher for non‐proportional (circular) loading paths than that for proportional loading with the same strain amplitude.  相似文献   

12.
In real engineering components and structures, many accidental failures are due to unexpected or additional loadings, such as additional bending or torsion, etc. Fractographical analyses of the failure surface and the crack orientation are helpful for identifying the effects of the non‐proportional multi‐axial loading. There are many factors that influence fatigue crack paths. This paper studies the effects of multi‐axial loading path on the crack path. Two kinds of materials were studied and compared in this paper: AISI 303 stainless steel and 42CrMo4 steel. Experiments were conducted in a biaxial testing machine INSTRON 8800. Six different biaxial loading paths were selected and applied in the tests to observe the effects of multi‐axial loading paths on the additional hardening, fatigue life and the crack propagation orientation. Fractographic analyses of the plane orientations of crack initiation and propagation were carried out by optical microscope and SEM approaches. It was shown that the two materials studied had different crack orientations under the same loading path, due to their different cyclic plasticity behaviour and different sensitivity to non‐proportional loading. Theoretical predictions of the damage plane were made using the critical plane approaches such as the Brown–Miller, the Findley, the Wang–Brown, the Fatemi–Socie, the Smith–Watson–Topper and the Liu's criteria. Comparisons of the predicted orientation of the damage plane with the experimental observations show that the critical plane models give satisfactory predictions for the orientations of early crack growth of the 42CrMo4 steel, but less accurate predictions were obtained for the AISI 303 stainless steel. This observation appears to show that the applicability of the fatigue models is dependent on the material type and multi‐axial microstructure characteristics.  相似文献   

13.
This paper proposed a simple life prediction model for assessing fatigue lives of metallic materials subjected to multiaxial low‐cycle fatigue (LCF) loading. This proposed model consists of the maximum shear strain range, the normal strain range and the maximum normal stress on the maximum shear strain range plane. Additional cyclic hardening developed during non‐proportional loading is included in the normal stress and strain terms. A computer‐based procedure for multiaxial fatigue life prediction incorporating critical plane damage parameters is presented as well. The accuracy and reliability of the proposed model are systematically checked by using about 300 test data through testing nine kinds of material under both zero and non‐zero mean stress multiaxial loading paths.  相似文献   

14.
Service load is often a non‐proportional multi‐axial load. The result of operation of such type of load on constructional elements is the decrease of fatigue lives in relation to proportional load of the same equivalent value. There are many damage models for non‐proportional fatigue, however, none of them obtained general acceptance. The key issue for creation of correct damage model is the selection of appropriate load parameters. The article presents methodology of obtaining cumulative exceeding histogram (load spectrum) containing key parameters of non‐proportional load. The hereby work includes: proposal of method of forming of block load spectrum for non‐proportional load, example block load programs for various types of multi‐axial load and results of experimental tests of fatigue lives obtained on the basis of formulated programs.  相似文献   

15.
This paper is focused on the effect of sea water corrosion on the gigacycle fatigue strength of a martensitic–bainitic hot rolled steel R5 used for manufacturing off-shore mooring chains for petroleum platforms in the North Sea. Crack initiation fatigue tests in the regime of 106 to 1010 cycles were carried out on smooth specimens under three different environment conditions: (i) without any corrosion (virgin state) in air, (ii) in air after pre-corrosion, and (iii) in-situ corrosion-fatigue under artificial sea water flow. A drastic effect of sea water corrosion was found: the median fatigue strength beyond 108 cycles is divided by 5 compared to virgin state specimens. The crack initiation sites were corrosion pits caused by pre-corrosion or created during corrosion-fatigue under sea water flow. Furthermore some sub-surface and internal crack initiations were observed on specimens without any corrosion (virgin state). Crack propagation curves were obtained in mode I in air and under sea water flow. Calculation of the stress intensity factor at the tip of cracks emanating from hemispherical surface pits combined with the Paris–Hertzberg–Mc Clintock crack growth rate model showed that fatigue crack initiation period represents most of the fatigue life in the VHCF regime. Additional original experiments have shown physical evidences that the fatigue strength in the gigacycle regime under sea water flow is mainly governed by the corrosion process with a strong coupling between cyclic loading and corrosion.  相似文献   

16.
The fatigue limit diagram provides the critical condition of non‐failure against fatigue under constant amplitude loading. The fatigue limit diagram is usually considered to give the allowable stress if every stress component is kept within the fatigue limit diagram. In the case of variable amplitude fretting fatigue, however, this study showed that fatigue failure could occur even when all stresses were within the fatigue limit diagram. An example of such a condition is a repeated two‐step loading such as when the first step stress is R=?1 and the second step stress has a high mean value. The reason why such a phenomenon occurs was investigated. A non‐propagating crack was formed by the first step stress even when well below the fatigue limit. The resultant non‐propagating crack functioned as a pre‐crack for the second step stress with a high mean value. Consequently, fatigue failure occurred even when every stress was within the fatigue limit diagram of constant amplitude loading. The fatigue limit diagram obtained in constant amplitude fatigue test does not necessarily guarantee safety in the case of variable amplitude loading in fretting fatigue.  相似文献   

17.
This paper proposes a new simple model for cyclic incremental plasticity based on activation states of slip systems describing stable cyclic stress–strain relationships under non‐proportional loading. In the model, the magnitude and the direction of incremental plastic strain are estimated by (1+αfNP) and Q , respectively. Here, α is the constant related to the dependence of material on additional hardening and fNP the intensity factor expressing the severity of non‐proportional loading. Q is the second‐order tensor describing the activation states of slip systems in polycrystalline metals and is given by the calculation using a virtual specimen. The model was examined by application to the prediction of the stable cyclic stress–strain relationship in extensive non‐proportional low cycle fatigue tests for type 304 stainless steel and 6061 aluminium alloy. The simulated results showed that the model gave a satisfactory prediction of the stable cyclic stress–strain relationship under complex non‐proportional multiaxial loadings for the two materials.  相似文献   

18.
The fatigue life of ZEK100 magnesium alloy in the phosphate buffered solution for various immersion intervals was investigated by experiments and theoretical predictions. The biodegradable behaviours of ZEK100 magnesium alloy were also studied. Microstructure observation showed that the corrosion behaviours were characterized by pitting corrosion. The corrosion rate decreased a lot in the initial 7 d and then almost stayed unchanged. After 28 d immersion, the elastic modulus almost kept stable, while the yield strength and the ultimate strength decreased a lot, which indicated that corrosion had important effects on the tensile mechanical properties. It showed that the fatigue life of the samples under the same stress conditions decreased with increasing immersion time under the asymmetric stress‐controlled cyclic loading. Considering the effect of corrosion on the material failure, a modified fatigue life model was proposed for magnesium alloy under corrosion.  相似文献   

19.
The paper presents the results of fatigue crack growth on low‐alloy 18G2A steel under proportional bending with torsion loading. Specimens with square sections and a stress concentration in the form of external one‐sided sharp notch were used. The tests were performed under the stress ratios R=?1, ?0.5 and 0. The test results were described by the ΔJ‐integral range and compared with the ΔK stress intensity factor range. It has been found that there is a good agreement between the test results and the model of crack growth rate, which includes the ΔJ‐integral range.  相似文献   

20.
This paper is devoted to the effect of corrosion on the gigacycle fatigue strength of a martensitic-bainitic hot rolled steel used for manufacturing offshore mooring chains for petroleum platforms. Smooth specimens were tested under fully reversed tension between 106 and 1010 cycles in three testing conditions and environments: (i) in air, (ii) in air after pre-corrosion and (iii) in air under real time artificial sea water flow. The fatigue strength at greater than 108 cycles is reduced by a factor more than five compared with non-corroded specimens. Fatigue cracks initiate at corrosion pits due to pre-corrosion, if any, or pits resulting from corrosion in real time during the cyclic loading. It is shown that under sea water flow, the fatigue life in the gigacycle regime is mainly governed by the corrosion process. Furthermore, the calculation of the mode I stress intensity factor at hemispherical surface defects (pits) combined with the Paris-Hertzberg-Mc Clintock crack growth rate model shows that fatigue crack initiation regime represents most of the fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号